K %0 37520

CR112846

Technical Report 70-118 June 1970
NGR 21-002-206

DESIGN AND SIMULATION
OF AN ALGOL CCMPUTER

by

Howard M. Bloom

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

Technical Report 70-118 June 1970
NGR 21-002-206

DESIGN AND SIMULATION
OF AN ALGOL CCMPUTER

by

Howard M. Bloom

This research was supported in part by Grant
NGR 21-002-206 from the National Aeronautics and Space
Administration to the Computer Science Center of the
University of Maryland.

ABSTRACT

This report describes the functional design of a stored-
program computer which can directly execute a program written in
a suibset of the programming language, ALGOL 60. For simplicity,
the chosen subset does not contain arrays, procedures, switches, or
FOR statements. The design is described by the Computer Design
Language (CDL)-.

The report consists of four parts: (a) description of the
subset of the ALGOL language using Backus Normal Form, (b) descrip-
tion of the basic elements needed to check the syntax of the program,
(¢) description of the design of the Algol computer, and (d) simu-
lation of the design. These descriptions include a complete set of
sequence charts and a complete description of the design in the
Computer Design Language. A sample of output from a simulation run

is also shown.

Table of Contents

Abstract

Description of the Simplified ALGOL Language

1.1 didentifiers and numbers

1.2 wvariables and labels

1.3 arithmetic expressions

1.4 boolean expressions

1.5 assignment statement

1.6 goto statement

1.7 dinput-output statements

1.8 declarations

1.9 conditional statement

1.10 program, block, and statement
1.1

Syntax Checking and Program Execution
.1 elements of the interpreter
2 interpreter mechanism

2.2.1 operation of the operator stack
2.2.2 operation of the operand stack
2.2.3 operation of the dynamic storage allocation table

2.3 syntax checker

CDL Description of the ALGOL Computer

3.1 configuration

3.1.1 memory configuration

3.1.2 arithmetic unit
3.1.3 hardware subroutines
3.1.4 terminals

3.1.5 other elements

3.2 sequence charts

3.2.1 initial point
3.2.2 unsigned number
3.2.3 identifier
3.2.4 wvariable

3.2.5 read statement
3.2.6 write statement
3.2.7 type list

3.2.8 declaration
3.2.9 label

3.2.10 goto statement
3.2.11 primary

3.2.12 factor

3.2.13 term

3.2.14 arithmetic expression

3.2.15 boolean expression
3.2.16 assignment statement
3.2.17 basic statement and conditional statement
3.2.18 unconditional statement
3.2.19 statement

3.2.20 compound tail

3.2.21 compound statement and block

3.2.22 program

3.3 Statement description
Simulation

4.1 changes in program
4.2 sample program

4.3 description of program operation

Acknowledgement

References

Design and Simulation of an Algol Computer

Howard M. Bloom

1. Description of the Simplified ALGOL Language

The syntax of the subset of the ALGOL language is taken from that
in the revised ALGOL report (3). However, certain definitions are altered
so that the language can be constructed from an operator precedence grammar
(2). Abbreviations shown in Table 1 are used throughout the report,

1.1 Identifiers and Numbers

<I> ::= A |...| z | <I> {a]...|]2} | <I> {0]...|9}
'Examples:
A ALPHA D10 IDENTIFIER
As defined, the identifier can consist of any sequence of alphabetic
or numeric characters beginning with an alphabetic character., However, the
proposed ALGOL computer recognizes only the last three characters of each i-
dentifier.
<UN> ::= 0]...|9] <uw> {0]...]9}
Examples:
10 654
The only numbers accepted by the computer are integers, as inclusion
of the floating point numbers adds complexity without illustrating additional
points. The integer of the ALGOL computer is limited to a value less than 218.
For a larger number, only the low-order 18 bits are used.

1.2 Variables and Labels

Variables and labels are the only types of identifiers permissable.
"They are indistinguishable in the program. All variables must be declared
at the beginning of each block. Since the computer only accepts integer num-—

bers, all variables are considered integer variables.

Table 1, Symbols for the Meta-language

Name Symbol
arithmetic expression AE
assignment statement AS
basic statement BS
block B
boolean expression BE
compound statement CPS
compound tail CT
conditional statement CS
declaration D
factor F
goto statement GTS
identifier I
label L
primary P
program PR
read statement RS
statement S
term T
type list TL
unconditional statement uc
unsigned number UN
variable A
write statement WS

Labels are not formally declared but are recognized if they either

preceed a colon or follow terminal goto.

<> = <I>

<L> = <I>
Examples:

VAR L1

1.3 Arithmetic Expressions

<P> 1= <UN>|<V>|(<AE>)

<F>

oo
oe
|

= <P>|<F>+<E>"

<T> = <F>|<T>{X|/}<F>
<AE> s3= <T>|{+|—}<T>|<AE>{+]—}<T>
Examples:
Primaries: 43 CAR (A+2/C)
Factors: PR PR42 (A+B) 4C
Terms: T CHA C/D (A+B) /C+D
Arithmetic Expressions: A AYB A/B A/B4E

1.4 Boolean Expressions

<BE> ::= <AE>{=|#}<AE>

The boolean expressions takes the value true if the expression is
true; otherwise, it takes the value false.
Example:

A+B=C4D E#F

1.5 Assignment Statement

The value of the expression to the right of the assignment symbol
is stored as the value of the variable to the left of the symbol.
Example:

A:=B+C

1.6 Goto Statement

<G8> ::= gotp <L>
After the statement is recognized, program control is transferred
to the statement in the program that has the indicated label.
Example:
goto L1

1.7 Input-Output Statements

When the read statement is recognized, an integer value is taken from
thé input channel and stored as the value of the variable. When the write
statement is recognized, the value of the variable is placed on the output
channel.

Example:
read(d) write(s)

1.8 Declarations

<TL> ::=<V>|<V>,<TL>
<D> ::= integer<IL>
At the beginning of each block, there must be a declaration statement
listing all the variables local to that block. All the variables are taken
from this list and placed in a table to await assignment of values as deter-
mined by the program.
Example:
integer A,B,I

1.9 Conditional Statement

<CS> ::= if<BE>then <US>{A|else <US>}| <L> : <CS>
The boolean expression is evaluated and given the value true or

false. If it is true, then the unconditional statement following then is

executed and the unconditional statement following else, if it exists, is ig-
nored. If it is false, the unconditional statement following then is not exe-
cuted and the unconditional statement following else, if it exists, is executed.
Example:

if A=B then C:=D+E else F:=GHi

if Q#R then L:=M+N

In the first example if A equals B, then C is evaluated but not F.
If A does not equal B, then F is evaluated but not C. In the second example,
if Q does not equal R then L is evaluated, otherwise nothing is done.

1.10 Program, Block and Statements

<BS> ::= <AS>|<GTS>|<RS>|<WS>|<L>:<BS>
<US> ::= <BS>|<CPS>|

<8> :1:= <US>[<CS>

<CT> o= <S>|<Cl‘> ;<S>

<CPS> ::= begin<CT>end| <L>:<CPS>

 ::= begin<D>; <CT> end|<L>:
<PR> ::= |<CPS>
Examples:
Basic statement: A:=B+C goto L Ll:read(E)
Compound statement: begin <8> ; <5> ;... end

Block: begin integer A,B;<5> ; <S> ; <8>... end

Blocks are distinguishable from compound statements by the fact that
blocks have declarations. A block is structured around the begin and end symbols
and contains statements enclosed by these two symbols. Any variable declared
in a block is local to that block and any blocks may be nested within the given
block. It is possible to declare a global variable and then declare the variable
within a nested block. The variable can take on new values within the nexted

block, but once that block is left, the value of the variable returns to the

global value. Labels are also only defined in the local sense. One cannot
transfer from outside a block to some statement within the block.

1.11 Representation of Characters

Because of hardware limitation, only a subset of the ALGOL charac-
ters can be used onAthe computer. The character codes for representing the
ALGOL characters are shown in Table 2. In the case of the multicharacter ter-
minals, such as goto represented by 'GOTO', the input is the BCD code for the
apostrophe followed by the codes for G, O, T, and O followed by thé code for
the apostrophe. Since the computer only recognizes a maximum of three char-
acters for a terminal, the input need only have the 0, T, and O in addition to
the'apostrophes. In table 2(b) for the special characters, the BCD codes for
the apostrophies are omitted; only the codes for the last three characters are

shown.

Table 2(a) Character Codes (simple characters)

(a) Simple characters

Algol Computer
Char. Rep. Code

o~ HO

]

NHKMHMEddH WULUN\RN 3+ ORKNOERHFRGIVHIEOHEHBEBOOAER +1 oo~V WNO MO
I~
‘—l

NHMEsiddHUOUN~RM DO HWORMBERGI YyHIOoHEBOOQWPR 4+ .

~~v
7~~~
~
B~

Table 2(b) Character Codes (Special characters)

Algol Computer !
Char. Rep. Code !
: - 3333
5 o3 3373
goto 'GOTO 466346
if "IF' 3126
then "THEN' 302545
else 'ELSE’ 436225

*k 5454
- 'EQ' 2550
'NE' 4525
begin 'BEGIN' 273145
end 'END' 254524
integer | 'INTEGER' | 272551
read 'READ’ 252124
write "WRITE' 316325

2. Syntax Checking and Program Execution

The concepts described in this section are essentially the features
of an interpreter program. These features, normally used as a software im-
plementation in a computer system, will be developed and then translated into
hardware elements for the ALGOL computer. The reader should be familiar with
the concepts of pushdown stacks, dynamic storage tables, languages, grammars
and operator precedence as discussed in (2). The concept of syntax-directed

interpretering or compiling is described in detail in (4).

2.1 Elements of the Interpreter

(a) Syntax—Checkef which checks to see if the input string is correct in
syntax, and determines the flow of execution.

(b) Operator Stack which stores the operators or terminals as they are
scanned by the syntax-checker.

(c) Operand Stack which stores the operands (or nonterminals) as they are re-
cogniéed by the syntax-checker.

(d) Dynamic Storage Allocation Table (DSAT) which stores the values of the

identifiers as they are being computed or set.

2.2 Interpreter Mechanism

Assume that the program exists as an input string to the interpreter
(or computer). It will be of the form:

$SlSZ°°°Sn$
where the Sj are characters in the ALGOL language, and the $ are the markers
noting the beginning and end of the string. These characters called terminals
are the ones listed in Table 2. The alphabetic and numeric characters when

concatinated to form identifiers and integers are called nonterminals

or operands. The other terminals are called operators. Eventually, the inter-

10

preter scans the input string putting operators on the operator stack, and
taking the other terminals to form nonterminals and placing them on the operand
stack. Using the concept of operator precedence, the operators on the oper-
ator stack, or possible future operators in the input string, operate on the
operands to form new operands according to the definitions of the language.
As these reductions take place, execution of this operand-operator phrase
is performed based on its semantics.
As the ALGOL language was defined, it contains an operator prece-
dent grammar. A grammar of this type has the property that no two nonterminals
~can appear adjacent to one another. An examination of the productions (or
définitions) given in Section 1 will show that this is true for this language.
From the set of productions, the precedence between all the operators
can be determined in relationship to any given nonterminal. Assume that the
input string consists of operators and the other terminals have already been
reduced to identifiers or numbers. it can be shown that reduction to identi-
fiers or numbers always take precedent over any other reduction. Define these
basic operands as <NT>. Then since the grammar has operator precedence, the
operand must be surrounded by operators, e.g. Ni<NT>Sj, where Ni is the operator
preceding the nonterminal (it has already been pushed down on the operator
stack) and Sj is the present character (i.e. operator) being scanned in the
input string. Then one of the following three relationships must hold:
Ni<Sj, NiéSj, or Ni>Sj.
The first relationship means that Sj has higher precedence than Ni’ that is,
a reduction iﬁvolving <NT> and Sj must take place before a reduction
before a reduction involving Ni and <NT>. The

second means that Ni and Sj have equal precedence, and the third means that

Ni has greater precedence than Sjw

11

For each nonterminal listed on the left hand side of the productions,
it is possible to comstruct the precedence between the possible operators that
can occur adjacent to it in a production. Without describing how precedence
is obtained, we will simply give the relations in Table 3. For those cases
where a nonterminal can have only one type of operator adjacent to it, that
reduction is performed whenever possible., There are many cases of reductions
by default when no operators can be combined with a nonterminal.

For example if the nonterminal is <P>, and if Ni is‘not 4+, then the

production <F> ::= <P> is invoked to reduce a primary to a factor.

2.2,1 Operation of the Operator Stack

When the character Sj is scanned, if a reduction cannot take place
then the following operation is done.

i:=1+1

N[i] := S[j]

When a reduction involving the top operator in the stack takes place,
the stack operation is the following:

Some execution is done on the string <NT>Ni<NT> or Ni<NT> and then

ir= i-1.

2.2.2 Operation of the Operand Stack

When the character Sj is scanned, if Sj is actually in itself a con-
catenation of alphabetic characters or integers then the following is done:
k:=k+1
O[k]:=S[j]
When a reduction takes place involving the top operator on the
stack one of the two operations will occur:
(a) Ni— binary operator

O0[k-1]:=0[k-1]IN[1]0[k]

12

Table 3, Precedence among Operators

Nonterminal Precedence

<F> +» X=/

<T> +; -<X = /

<AE> (<%= -
== €« 4+ =
+ = - % ==
s = < 4= -

<TL> integer < ,

<CT> ES&EE.‘ 5

13

(b) 1Identifier Type
The type is either INTEGER or LABEL
(c) Value

The value will be the numerical value in the case of a variable or
the position in the input string Sj where the first character of the state-
ment referenced by the label is stored, in the case of labels.

The pointer T will always be used to have the value of the present top
row in the table. Thus T points to the last variable declarea in the present
block being scanned.

The DSAT has an auxilary stack STORAJ whose index BLKNUM is the de-
gree of block nesting. The value of the top row in STORAJ is the location (or
row). in the DSAT of the first identifier declared in the present block being

scanned. There are essentially five operations performed with the DSAT:

(a) Entering a block (Recognition of begin)

BLENUM:=BLKNUM+1

STORAJ(BLKNUM) :=T+1

This operation increases the block nesting index by one, and stores
the first possible row of the DSAT (since T is the top row of the previous

block) in STORAJ.

(b) Declaring variables

After the declaration has been scanned, all the declared identifiers
have been stored in the operand stack. At this point for K identifiers on
the stack, do the following:

T:=T+1

DSAT(T,1) :=0(k)

DSAT(T,2) :=INTEGER

DSAT(T,3) :=

14

k:=k-1

(c) Declaring labels
After the block is entered, it is scanned for labels. This pro-
cess simply looks for colons and stores the preceding identifier (stored as

0(k)) in the table. Any labels declared within a block nested within the

given block are not stored. Hence it is necessary to keep a count of the degree

of nesting. These labels must not be stored because bhe language semantics
do not permit a transfer into the middle of a block from outside the block.

The storage operation is the following. Assume the colon occurs at location j

. of the input string:

T:=T+1
DSAT(T,1) :=0(k)
DSAT(T,2) :=LABEL

DSAT(T,3) := j+l

(d) Assignment of values to identifiers

In executing the statements of the program, the value of the identi-
fiers are not stored in the operand stack but instead the row of the DSAT
(where the identifier is located) is stored. -Thus the operand stack must con-
sist of two columns. The first colum contains the information '"link'" or
""value". The information is "link" if the operand is an identifier. For
any other nonterminal including unsigned number, the contents will be "value".
The second column contains a row number of the DSAT where the identifier is
stored if column one is %1ink'", or it contains a numerical value if column

one is "value".
(e) Leaving a block (recognition of end)

T:= STORAJ(BLKNUM) -1

BLKNUM :=BLKNUM~-1

15

When the block is left, T is made to point to the top of the pre-

vious block and the degree of nesting is reduced by one.

2.3 Syntax Checker

The syntax checker controls the flow of execution of the program while
checking to see if the input string is an acceptable program. The checker
can be described through the use of a flow chart. Without going into much
detail, a few simple concepts will be explained.

The flowchart consists mainly of "nonterminal boxes", i.e. points
in the program when it is assumed a given nonterminal has been recognized.
Questions asked at these boxes are: What is Sj? or What is Ni? These questions
determine the order of reduction based on the precedence relations. There is
a unique box called the initial point that begins gcanning the first charac-
ter of any right side of a production. The flow of the interpreter centers
around this box. Other boxes are involved in the execution using the operator
and operand stacks. At many points in the flowchart, it is possible to recog-
nize illegal strings. At that time, the variable ERROR is set to a given
value and the interpetor stops.

The algorithms for the execution phase of the program will be given
at the time when the actual computer implementation is described. The syntax
checker flowcharts on the following pages will serve as a rough guide as to

what is happening in the computer.

16

l . K:=k+1
Al...lz Qﬁ,..?Q 9[k§:=s[j} <UN >
Ji=g+l
F S
Initial | "begin'] Store block
Point ! labels in \
{ DSAT °
! S.=% =3
J =
BLENUM : =
| 5 slyl=+, BLKNUM+1
| 'integer' %,(- STORAJ[
'read’ fif? BLKNUM] : =
'write' 'goto? T+
Increment Box Y Y
: i:=1+1 .
N[i]:=8[j] N
Ji=J+1
k:=k+1
olk]:=5[7] yers
Ji=j+l '
<UN» ol...lo [TolxJ:=10%0[k]+5[3]
<P> other . ! ji=3+1
sljl==
[
(1) other - If previousl
i declared,
slyl=2 1AY...) Zia. ..o change O[k]
‘ from value to
link

¥

Olk]:=0[k]sly]

Ji=j+l

Fig. 1 Syntax Checker and Execution for Initial Point,
Increment Box, Identifier, and Uns;gned Number

17

<TL> «<p?
R other T
<V? , .
wther [W[1]=7 (, [N[i-1]=7)'read | s[3]="7 =i-
sljl=2 [’ 4 i j+1
dther l' 'write' other
’ <p> ERROR : =2
INC A4 end
ERROR | other , [S[J]:=7
end + RS> i
) |
Read number into
"BS>6— k:=k-1 i:=i-2 DSAT indicated
A w j: j+l bY O[k]
TEE \
Write out DSAT k:=k-1
variable indi- «Bs» ¢
cated by O[k]
for count
<TL> Hi=i-1 variables
Vo 3 ,ysfeount:= IT:=i-1 | T:=T+1 !
count:=0 “kount+l “1Dsar[T,1] :=0[k] ? |
N[il=? A] k:=k-1 1| <D
1 | DSAT[T,2]:=
'integer' integer s[3yl=2
PR <GTS» Other Y l}
'goto'yli:=i-1 _ :
<I>) Wli]=2 4 "1 :=DsAT[0[k],3] ERROR:=L | INC
kK:=k-1 end
other Remove skipped Erase :}'then'|'else’
2 INC Blocks from .1 and all N[i] occuring
other i DSAT : in blocks that are
: skipped
ERROR:=12
end
P

‘Fig. 2 Syntax Checker and Execution for Variable, Read Statement,
Write Statement, Type List, Declaration, Label, and Goto Statement

18

.0ther
4 L
<p> | P E=i-1 J<Fs
"olk-1]:= ’
N[il=7 Dlk-1]F0lx s[jl=2
i c:=k-1 * 4 other
ERROR:=14] INC INC

RROR:=16
emd
4 other
N '"THEN'
7 islil=2
i:=i-1

V. 3

Tend'

‘l\
o '-NE'
N[i]=2 B:=B' T:=i-1 <BE>
N B 'IF
other 4 N[il=?
<AS> other
<AE> K:=k-1
’ 0l k-1]:=0[k] > RROR:=15
DSAT[O[k-1,3] i end
:=0[k]
¢BS>
Increment j until
INC L'else Bljl=% — s[jl=telse’ ;

Fig. 3 Syntax Checker and Execution for Primary, Fadtor,
Term, Arithmetic Expression, Boolean Expression,
and Assignment Statement

19

<CTS»> L<CPS» »
<RS> ¢BS? sUS> Scan j until
WS> f other, telse' 1 S[3]:=; 'end!
«AS> | N[i]=2 1 sl3l=2 7
__§_‘
\ (l
other
i:=i-1 v '"then' ‘_g_@_)
k : =k- 1] @i} =7 1+ =11
el [I 4 N[il=2 on . <S>
i} else [i] %thﬂg,
other r :
v
i:=i-1
INC k:=k-1
1
5> _ <CT>
s G fTi=i-1 'end' F[i]=?\; i:=i-la+N[i]=?
k:=0 4 1 slyl=2 ’
N[il=2?
£ '"begin' '"begin'
other T:=STORAJ]| T:=STORAJ|
BLKNUM]-1 BLKNUM]-1
BLKNUM: = BLKNUM: =
BLKNUM-1 BLKNUM-1
¢US» ii=i-1 Hi=i-1
other 4
,) .
 , '
,other] S[j]=? - other <CPS»>
N[il=% 7 7
N[i]=2
: $
A \(v
H:=3-1 | <PR> J QR E
k:=k-1 o$ fr=i-1 , END f
N[il=2 |’ ir=i-1
k:i=k-=1
other
ERROR:=11
end

Fig. 4 Syntax Checker and Execution for Basic Statement, Unconditional Statement,
Conditional Statement, Block, Compound Statement, and Program

20

3. CDL Description of the ALGOL Computer

At this point we are ready to transform the interpreter software
design described in the last section into the actual computer hardware.
A good example of how CDL is used to describe conventional computers that oper-

ate on a machine language can be found in (5).

3.1 Configuration

The configuration of the computer is shown in Figs. 5 and 6. TFig. 5

shows the memories, white Fig. 6 shows the other elements.

3.1.1 Memory Configuration

The ALGOL computer contains a main memory, one input chamnel, one
output channel, and four pushdown stacks (Figure 5). Because of limitations
in the CDL terminology, these seven elements will all be defined as memories.
The elements are defined in the following manner.

(1) MEM - This element is the main memory of the computer. Its contents is
the program string for a given ALGOL program. The program is stored one
character to a location to correspond to the six bit size of the BCD code.
The string begins in location zero. The address register J corresponds to
the index of the program string and the buffer register S corresponds to the
BCD code of the string character. Special characters such as 'end' that take
up more than on memory location are placed in the SA register with only the
three lower order characters being stored. The registers 50, S1, and TEMP

are used for cascading purposes.

(2) INP - This element is the input channel of the computer system. At
loading time, all the input data is stored on the channel in queue form. The
address register, IN, is initially zero. After a request for a datum is made
through a read statement, IN is incremented. The datum is placed in the buffer
INA. The word size permits a sign bit and an integer number with a value

less than 218°

21

0-9 0-> 0-5

0-9 0-9 - ,
reEMp, | J #— D | [Im] [ou_]
1 i
MEM INP LOUT
0-1023 ~o-63 0-63
0-5 __ 0-18 E 0-18 |
| 8] [Twa 1 1 oua |
0-17 0-12 __0-5 0-5
[sx | [so 1]
0-17 0-12 0-5
| stMp 1 | s1 I
0 N
0-63 0-63
0-8 :
0-36 0-18 I
[To_ 7] r —== | = I
- 0-17 18-36 13-18
0-7 TYPE VALUE OP
f 29-36
LOC
0-T __0-3 0-3
-
A ! O-3
[ICTBH
DSAT STORAJ
0-255 0-9
0-54 0-7
' IA | I BA |
0-17 18-35 36-54
NAME TYPE VALUE

Fig° 5 Configuration of Computer Memory
i

1

22

ML? | oD | EUB | bIv | Appg Exp | EYym | LInd & 1 UADD {USUB|

0-2 0-2 0-1 0-3 0-1 O0-
{FA | FS I[FDIEFAS Ikm SY UA | FUS | decoders
R A A PR %lHiI‘IJ'H

Usc

MC AC sC DIC ASC EC

0-18 0-18
L x | [xPp |
1-18
M BI Lz { pv ihv |pv |
0-18 0-18 __0-18
! A |] Q | | AP |
1-18 1-18 0-1
M M {EQ] [GR|
AQ=A-Q(M) __0-4
LETTER NUMBER c(0-18)
/\
? 1 >
TERMINAL TERMINAL TERMINAL
] 1 T T
s(0-5) sS(0-k) A(1-18) x(1-18)

Fig. 6 Configuration of Nonmemory Computer Elements

23

&

(3) OUT - This element is the output channel of the computer system. The
address register OU is initially set to zero. When the write étatement is
recognized, the datum corresponding to the variable in the write statement is
passed from the DSAT into the buffer register OUA which is then placed onto

the channel in queue form.

(4) O - The element is the operand pushdown stack and performs the exact
operations as defined in Section 2. Its buffer register and consists
of two subregisters for storing the type and value inf .ton. It has the
address register K and an auxillary register K1 used to store temporarily

in certain operations the value of K.

(5) N - The element is the operator pushdown stack and performs the same oper-
ations as defined in Section 2. Its buffer register is IA and its address
register is I. There is an auxillary register Il used to temporarily store

the value of I.

(6) DSAT - This is the dynamic storage allocation table (or pushdown stack).
All identifiers recognized by the computer are stored in this table. Its
addresézregister is T and its buffer register TA is divided into three sub-
registefs,to correspond to the name, type, and value of the identifieg. The

registers Tl and TO are used for cascading operations.

(7) STORAJ ~ This is the auxillary stack for the DSAT used in handling
block nesting. Its address register is BLKNUM and its buffer register is

BA. The registers ITEMP and ICTBK are used in nesting algorithms.

3.1.2 Arithmetic Unit

The arithmetic unit consists of five registers. The algorithm for
addition, subtraction, multiplication, and division were taken from (5).

The algorithm for exponentiation involves repeated multiplication.

24

(1) Storage register X - This register is used to store the value of 0[k]
in binary operations.
(2) Accumulator A - This register is used to store the value of 0[k-1] in
binary operations and also stores the final results of the operations.
(3) Régister Q - This is the standard extension register.
(4) Register AP - Auxillary register used in exponentiation.
(5) Register XP - Auxillary register used in exponentiation.

In addition to the five registers there are five special bits to
indicate the sign (SI), logical zero (LZ), overflow (OV), addition overflow

(AV) , and division overflow (DV).

3.1.3 Hardware Subroutines

There are eight hardware subroutines used for performing arithmetic
operations. When an operation is required, for example, multiplication, a
special bit, MLP, is turned on. At this point the subroutine assumes that the
operands have already been stored in X and A. After the operation is com—
pleted, the bit is turned off and control returns to that part of the computer
that originally caused the bit to be turned on. The eight bits: MLP, ADD,
SUB, DIV, ADDS, EXP, UADD, AND USUB; have a corresponding counter and decoder
as shown‘in the figure. The names of the bits are self-explanatory. The
sequence charts for these routines appear in Figures 7, 8, 9, and 10.

There is a special hardware subroutine used for determining whether
the new character Sj is a simple character such as "/" or a special character
such as 'end' that takes more than one location in memory. The bit SYM is
turned on each time a call to the memory is made to fetch a new character.
Associated with SYM is the counter FSY and decoder SYC. One can see how the
fetching is done in the sequence chart (Figure 11). When a character is

fetched, a check is made to see if S='. If so, fetching continues until the

25

ST 4= 0,AV &= O
L7 = 0,0V é— O

ST &= 1
K (M) - X(M)'

EDDS G ﬂ

ya

ADDS=0

1 *ovi I =D < AT

(1-18) «~ A(1-18)
+ X(1-18) + ¢(1-18)

= v

A(M) & #
countup A(M) (o (M =7"{:(7-{7).__._

v
EZ <1

ya

Fig. 7 Sequence Chart for ADD, Subtract, and Add Subsequence

26

OVe&—0,L7%¢0

STI€-0,Q(0)e=0

{ &
A7 Y

COUNTg~countdn
COUNT

XPé&=countdn
XP

l o« ¥
K e AP<{(XP=0)

F

EQ=

L

o L G L]

Gur
X e
¥

“£4DE¥=O) B

4{EX P

Fig. 8 Sequence Chart for Multiplication and Exponentiation

r

£ \ 4

: DIV=1
A =

OV =0 , L Zd=m 0
DVe—0,SI€—~0
Q(0)e=0

M)6~X(M)|

‘ [*iADDs 0)

27

AQ(M)e—shl AQ(M)

OVe=A(1)

(Ov+Lz= L}—*—AKM~+»A(M)I

=
IDIV 4= Of<—DVe—1}

N

"

(EZDps=0)-%

i COUNT¢—22

~

LiZ &0

OUNT¢=—countdn
COUNT

A(M) {(aDDS=0

A (M) ¢=cpuntup Y £

Fig. 9 Sequence Chart for Division

28

OA(TYPE)\ .
=0

Ty
; =9 '

| ml*-o(ioc)] grle-o(zoc |
T e—T 1] T e T 1
¢~ T 771 T
[LA&=D EAT (T ErAe—fD‘gAT (T}
OA(VALUE) g DA (VALUE) g
TA(VALUE) . TA(VALUE)
OA(TYPE) é= OA(TYPE) ¢
TA(TYPE) TA(TYPE)
¥ TéaT1
T T1 - <
0 (K)4=—0Al DA(18)e-0A418) "}
|§AD')EO}
i \ 4

7

Fig. 10 Sequence Chart for Unary Addition and Unary Subtraction

29

EM(J)

a =ZET

=
S ¢ MEM(J)
D «= countup D

-
BYMe:O}¢:{Silh)

Jd &= D

SA &= SA(6-17)-8

ountup D

S &= MEM(J)

S = 33
J 4= countdn J

SA(12-17) €= S
- countup D

D &= countdn D

<

SRCH &= 1

V. 3

] %= D

SA &= SA(6-1T7)-S

Fig. 11 Sequence Chart for Fetching Special Characters

or Simple Characters from Memory

30

next apostrophe is scanned. The register SA is set to the last three characters
fetched and a bit, SRCH, is turned on to indicate that a special character
has been fetched from memory. This process is also done if S="." or "%",
In this case if new fetching yields the sequences "..", ".,", or "#*" the
sequence is stored in SA. Otherwise the character remains in S and SRCH remains
off.

There is a special hardware routine used before initiating binary
operations (Figure 12). The routine begins when the bit LINK is turned on.
At this point, it is possible that the value stored in O[k] or O[k-1] may con-
;ain the row in the DSAT where the identifier is stored. The routine checks to
see if the type of the operand is "link" (indicated by a zero value). If
so, the value of the identifier in the DSAT is transferred into the operand
stack, At the same time, the value is also placed in X for the top operand, and

in A for the next to the top operand.

3.1.4 Terminals

It will be necessary to know whether S is a letter or a number. If
we consider S as being made up of six logical variables then S=SOSlSZSBSASS'
Using the BCD code for possible letters or intggers, one can construct a truth
table and then find a boolean expression giving a true value for number or
letter.

The boolean expression for number is,

number := s&si(sé + Sgsi)o

from which the terminal statement is obtained and shown later. The boolean

expression for letter is,

letter:=S’S'S'(S3+S

1 1at iqgig?
05152 +5)+SOSZ(S3+S4)+(SO+51)(SZS Si)+S,.5°8!s/)s

4 75 3 071737475
from which the terminal statement is also obtained.
The other terminal is used to comstruct the carry expression for

binary addition.

3]

a

£

Lo o

LINK

b < o(x)

{ OA(TYPE
(2o

Pl € ;A(Loqj

S T

EA &~ DSAT(T)|
N

OA(VALUE) <=
TA(VALUE)
T - TI1

X ¢ OA(VALUE)

K &= countdn K

¥

OA (VALUE) -
TA(VALUE)
OA(TYPE) 4=
TA(TYPE)

T = T1

Y
7y

/
A ¢ OA(VALUE)]

A 4

INK €= O '

Fig. 12 Sequence Chart for Chainging Operand From Link to Value

32

3.1.5 Other Elements

The elements EQ and GR, representing equal or greater than, are used
in ring operations along with the register COUNT. The register ERROR is used
to store a number corresponding to a syntax error. The bit G with the counter
F and decoder DC is used for overall program control. The clock P is used
for sequencing the microoperations, and the three switches POWER, START, and
SIOP are used for turning the power on, starting the sequencing gnd stopping

the computer.

33

3.2 Sequence Charts

Now that the computer elements have been described, we can begin
discussion of how the computer operates. The operation can be thought of as
two distinct cycles. The first cycle corresponds to the initial point box
in the syntax checker flowchart. A symbol in the program string is fetched
from memory. Either this symbol is an operator and the symbol is stored on
the operator stack and the cycle is repeated, or the symbol is a letter or digit
and control goes to the unsigned number or identifier box. This latter case
will be defined as the second type of cycle which can be denoted as the exe-
cution cycle. We will call all operations centering around nonterminal boxes

as occuring during the execution cycle.

3.2.1 Initial Point (or Fetch Cycle)

The sequence chart for the fetch cycle (Figure 13) is an analog
to the initial point box and increment box (Figure 1). When the power switch
is turned on, all the special bits for the hardware subroutine are set to zero.
The addresses for the memories are also set to zero. The computer will then
go into a wait cycle until the start switch is pressed. Then the first charac-
ter is fetched from memory. As will be the case whenever any hardware sub-
routine is called, the computer will cycle about its present point umtil the
routine operation is finished.

The fetching will continue until a digit or letter is recognized.
In reading any sequence chart, it is important to remember that the register S
represents a simple character and the register SA represents a special char-
acter resulting from the concatenation of simple characters because of key-
punch symbol limitations. The two registers are never used at the same time.
If the flipflop SRCH is on, that means that SA is used; if SRCH is off, then

S is used. 1In all the charts the octal number representing the BCD code of

34

POWER(ON) NSTARTtON)
ADD€~0 ,SUB¢=0 ,MLP&~0 ,DIV%=~0,UADD4=0,USUB<O0, <]
LINKé—0 ,5YMénO ; EXPg=0 ,ADDS =0 ,0U&=0 , INgee O, ‘

T e O Ké—O le=0, BLKNUM@—O 3D ,Feeme O, SI@—O
AV =0 s DVe==0, LZ«-O OVg=0 ,TEMPé=0 , TOé—O

.

% A& S5S0-5r =—(8=53

N

|Ie~countupI]

(I IA

L i
Y)

Fig. 13 Sequence Chart for Initial Point and Increment Box

STOP (ON)
B RROReme 0 , SO0 , 51410000 &
<0l
€0 <
FERROR @~ 1

35

the last three characters of a special symbol is used. The reader should re-
fer to Table 2 whenever he cannot recognize the octal number. .The fetching
operation can be separated into two cases:
(a) Symbol is not special character — This is the case when SRCH=0. If the
character is a number or letter, control goes to the appropriate nonterminal
point. If the character is "$" or "(" then it is placed down on the operator
stack. A special register S0 containing all zeros is cascaded with S to cor-
respond to the word size of N. If the character is a "+" or "-'", this means
that the operator is unary and a special register S1, containing a one bit
in the first bit position, is cascaded with S before storing in N. If the
character is a blank, then it is ignored and another fetch is made. For any
other characters that are recognized, the error register is set to a value of
one and the computer is placed into the wait cycle.
(b) Symbol is special character - If the special character is not 'begin’',
then the character is simply pushed down on the operator stack and a new
character is fetched.

If the character is 'begin', the operations discussed in Section
2.2.3 are done. The block number is incremented (operation 1) and a fetch
cycle is begun that will examine all characters in that block to find the
labels (Figure 14).
The operation can be defined by the following steps:
Step 1. Temporarily store the position j in the input string of 'begin' in
register TEMP so that when the operations are completed, control can return to
that point.
Step 2. Fetch the new character S[j] from memory.
Step 3. Let STMP be a register storing the last three characters fetched.

Whenever a ";" is scanned, STMP will contain the name of the label. It cannot

36

Q

BLKNUM&= countup BLKNﬁj

BA &= countup T
TEMP(0-9) €= J

BTORAJ (BLKNUM)= BA|

A 4

€ DSAT (T) é=TA}

STMP gm= 0
COUNT g1/
1 - Y < ¢
[EYMa1]
.Y /
>
L4
A b COUNTé~countupCOUNT
= £
A BTMPé& N
STMP(6-17) ’
-5
ETiMPe=0 & FOUNT4=countanCOUNT)
i &
l€=countup T (COUNT=0,
TA (NAME)&= STMP =
TA(TYPE)¢=222543 EA4=-2731L5]
TA(VALUE) =~TO-countup J v

D eTEMP (0-9)]

D4=-countup J
I EMP &~ 0

Fig. 14 Sequence Chart for Placing Labels in the DSAT

37

contain any special characters or operators because the sequence " 'end'<L>: "

" "n,n

must occur in recognizing a label and when ‘end' or ";" is scanned,
STMP is cleared. Thus after the label itself is scanned, STMP must contain
either the last three characters in <L> or leading zeros followed by one or
two characters that make up the label.

Step 4. If S{j] = 'begin', increment the degree of block nesting, indicated
by the COUNT register. If S{j] = 'end', decrement the nesting degree. If
COUNT = 0, then the block has been completely scanned and the memory address
register J is reset to the position it held before scanning the block. The
character 'begin' is placed in the register SA and stored in the stack N.

A new fetching cycie begins at the initial point. If S[j] is neither of the
above, return to step 2.

Step 5. If S{j] = ":" and the degree of nesting is one, then the label is
stored in the DSAT according to operation 3 in Section 2.2.3. Otherwise re-

turn to step 2.

38

3.2.2 Unsigned Number

Upon reaching this point, the symbol S is placed on the buffer register
OA (of the operand stack 0) in the value subregister (Figure 15). Its type,
'integer', is stored in the type subregister. Then new symbols are fetched
until a symbol is recognized that is not a digit. At this point the number
has been computed and stored in the buffer. The contents of the buffer is now
put into the operand memory and control goes to the primary logic. This is
the result of the production that states that all unsigned numbe?s are reduced
to primaries. The algorithm for computing the number is given below:
-Step 1. Set OA =10

Step 2. For all digits S[j], OA=12_ * OA + S[j]

8

3.2.3 Identifiers

When the letter has been recognized in the initial point, the production
that a letter is reduced to an identifier is imposed and thus control now goes
to the identifier section (Figure 16). The letter is stored in the buffer
register OA. Fetching is initiated and continued until the new character is
neither a digit or a letter. The characters to_this point have been ring shifted
in the OA register to correspond to the production reducing a sequence of letters
and digits to an identifier. Only the last three characters are stored.

Now the identifier whose name is stored in'the buffer register is
compared with all the identifier names stored in the DSAT until a match is
found. The register COUNT is used to keep track of how many times the sub-
registers OA(VALUE) and TA(NAME) have been ring shifted. Regardless of a

match, the shifting must occur 22_ times so that the names are properly

8

stored after the comparison is completed. If a match is successful, the flip-

flop EQ is set to one; otherwise EQ is zero.

OA &= O
K &= countup K

OA (VALUE)¢-S0-8
OA(TYPE)g=2T72551

K)e0A

A &~0A(VALUE)
X122
ML Peg=1

——————bA(VA;U;)e-AI

Fig. 15 Sequence Chart for Number Box

39

40

0A¢=0
€-countup

t

PA(VALUE) ¢=S50-5 |
P |

ErMe1]

£ V¥

LETTER=
N

TlémT
COUNT ¢ 0
)
TA4-DSAT(T)
EQe1
¢ ¥ ¢
EQé&— TA(0)=0A(19))
A > Y ©
COUNT 40 COUNTe=countup COUNT
é~countdn T TA(NAME)e=cil TA(NAME)
44 JA(VALUE)€0A(18)-0A(20-36)-0A(19)
EQ=1} —Ft T=0 = (COUNT=22 ;i
TA4=DSAT(T) 0 (K)¢=—OAl
OA(TYPE)&=0 &T1

OA(VALUE)é== 0~ TEMP~T

Té=T1

TA(TYPE)=222543 =
@ ég;)—»@

Fig. 16 Sequence Chart for Identifier Box
®»

41

The reason for finding a match is the following: If ;he identifier
has been previously declared, then the contents of the buffer register should
be changed from the name of the identifier to the row T of the DSAT where the
identifier is stored. Also from the type subregister of TA, we will know whether
the identifier is a label or a variable. This then invokes either the produc-
tion reducing the identifier to a label or a variable. Before transferring
to the new nonterminal, the contents of the buffer register containing the link
information is put into the operand memory. If no match was found (T=0),
the computer assumes that it is in the middle of a declaration. The identifier

is reduced to a variable.
3.2.4 Variable

A variable may appear in one of five productions: primary, read
statement , write statement, assignment, and type list. Hence there are also
many possible adjacent terminals to consider. They are ":=", "," ["(", " read",
"write", ")", and indirectly "integer". Depending on which terminal is pre-
sent in the N[i] or S[j] position, the computer will proceed as shown in the

sequence chart (Figure 17). In the absence of any of the above symbols, the

variable will be reduced to a primary.

3.2.5 Read Statement

The read statement sequence (Figure 17) is concerned with bringing
an integer number off the input channel and into the DSAT. The address re-
gister IN for the memory INP could be thought of as a read mark on a tape.

The information is read from the tape and the mark advances. At this point,
O0[k,2] corresponding to OA(VALUE) holds the row value in the DSAT of the vari-
able whose value is desired from the input chamnnel. The operation can be

described as follows:

42

-

fre-N (T)>(1a=272

TA¢—-N(
Te11

1) & le=T
4=countdn I

551 TA=T3
-E—M D

lE_}—ﬁ{IA 316325

qiiré—*——{lA g?z

@=_3_h___)—7~

W

ERRORE&=2

G¢=0

[é- countdn
SYMe=1

Bl

 [é=countdn I

T NA&=INP(IN)
L N¢—~countup
T1e—T,0h&=0(

IN
K)

P-TEMP-T&~0A (VALUE)]

frA¢=DSAT(T)|

ITA(VALUE) ¢ INA}

SAT(T)e=TA
T1

&countdn K

1%5

S

SA;Z}fLERRORQ-S

G ¢=0

4
SYMe=1
Ié=-countdn T

I¢-countdn T
T1¢-T
0A€0(K)

EZTEMPi%é-OATVALUE)]

TA&=DSAT(T)
T¢=T1
Ké&—countdn K

BﬁAe—TéﬁVALUEH

OUT (OU) «=0UA
OUé&~countup 0OU

Fig. 17 Sequence Chart for Variable, Read Statement, and Write Statement

43

DSAT[O[K,2],3]=INP[IN]

IN=IN+1

K=K-1

After reading the next symbol S[j] from memory (SYMé&—1), because the
present S[j]1=")" was used in the phrase, the read statement is reduced to a

basic statement.

-3,2.6 Write statement

The write statement sequence (Figure 17) is concernéd with writing
an integer number from the DSAT onto the output channel. At this point, the
variable, whose value from the DSAT is desired, has its DSAT row stored in
0[K,2] or OA(VALUE). ‘This value becomes the new address of the DSAT and its
contents is placed in the buffer register whose contents is now transferred
to the output channel. The operation can be described as follows:

OUT[OU]=DSAT[O[K,2],3]

0U=0U+1

K=K~1

After reading the next symbol S[j] from memory (SYMé=1), because
the present S{j]='")" is used in the phrase, the write statement is reduced

to a basic statement.

A

3.2.7 Type List

Before the type list is reduced to declaration, it is necessary to
store the names of the variables on the list in the DSAT. The process is
shown in the sequence chart (Figure 18). The counter COUNT is used to count
the number of variables in the list. This is done by counting the number of
commas on the operator stack and adding one for integer. The next sequence is
operation 2 described in Section 2.2.3, which is repeated COUNT times. When
COUNT is zero, the type list is reduced.
3.2.8 Declaration

There are no execution operations necessary for declarations (Figure
i8) except to check and make sure S[j]=";". If no, there is a syntax error
and the computer goes into a wait cycle. If yes, then control goes back to
the increment block to continue scanning for the nonterminal block.
3.2.9 Label

The label appears in essentially two productions: (1) Goto state-
ment as a designated transfer and (2) General statements as a reference la-
bel. The sequence chart (Fig. 19) shows how a check is first made for
N[i]=goto. If yes, then the phrase involving N[i] and the label is reduced
to the goto statement. If no, then S[j] must be a colon and is stored in

the operator stack.

3.2.10 Goto Statement

The sequence charts (Figs. 19 and 20) show the execution of the goto
statement. Before transferring to the statement indicated by the label in
the goto statement, two bookkeeping operations must be performed. Since the
DSAT is dynamic storage, the variables declared in blocks that are to be

in the transfer must be erased from the table. Also the operator stack must

QUNT<¢=-0
N
I'd
N
TAe=N(T)
' = #
COUNT4=countup COUNT((IA=T§}—r{iA=2”25i;}—f——ERROR+—5

Ié—countdn T G ¢=-0

A
COUNTé=countup COUNT
A(TYPE)&=2T72551

?,
\

DA4~0(X)

K¢e-countdn K
g=countup T
QUNTg&—countdn COUNT

0~-TA(NAME) e=O0A(VALUE)
" TA(VALUE) &= 0

PSAT(T) &= TA

ERROR &= Uf—7
&« 0 ,

2 3

Fig. 18 Sequence Chart for Type List and Declaration

WAT

45

46

s Y- ERRORﬁ—lE
= =0

Fe=countdn ﬂ“’““fp

0Ae—0(K) T1eT A DSAT (T)]
K& countdn K «0A(LOC)
I TEMP&=BLKNUM OA{VALUE) &~TA(VALUE)
R . T T 1)
7 N 7] e T
BA¢— STORAJ (BLKNUM)
DOUNT =0
D Réer 0
N Y
£ # - .
(BA(O)=T1(O)}_—{CR=6)—{BA(O)=O}Jé4CRe»2|

v: 1#

(ERéEl’

)
\

-4
OUNT%=~countup COUNT
Ae— cil BA

Tl cil T1

+
COUNT=10

BLKNUM¢=countdn ; ={GR=2 a [1¢-0,EQé~1
BLKNUM ICTBK&~0
COUNT&=0
BLKNUMdé=ITEMP
ITEMP =~BLKNUM

Fig. 19 Sequence Chart for Label and Goto Statement - I

&)

g

47

{
z{ngMP(o)=BLKNUM(o))41~
(EQE%}—%' T "
COUNT¢-~countup COUNT
EQe~0 TTEMPé=~ cil ITEMP
BA4=STORAJ (BLKNUM) BLKNUM& cil BLKNUM
BLKNUM<&=-countdn
BLKNUM
CTBKe¢=countup
ICTBK
T34
= (ICTBK=0
ff¢=countdn Tyl ' <
hA N(T
Ag=N(T)

|I&~countdn Ikr—;(iA=3025 5

A (1)
\ 4

T4~ countdn T

[CTBRé&countdn ICTBK

\ 4

IA=2731h5)4ih<-countdn q

Fig. 20 Sequence Chart for Label and Goto Statement - II

48

be reduced by the number of begin's that correspond to the number of blocks to
be skipped. If the goto statement had a label or was part of a conditional
statement, then either ":", or "then", or "else" must also be erased. The
operators must be erased so that the syntax checker will operate successfully.
The operation of the computer algorithm is described below:

Let the register ICIBK be used to count the number of blocks to
be skipped.

Let the register COUNT be used to count the number of bits shifted
in BA and Tl or ITEMP and BLKNUM so .that the circular shift operation leaves
'the registers in the original position after the comparison is resolved.

Let Tl be the row in the DSAT where the label from the transfer
statement is stored.

Let the register GR be used to indicate whether the contents of BA
is greater than (GR=2), equal (GR=0), or less than (GR=1) T1.

Let the register EQ be used to indicate whether the contents of
ITEMP (the register stored the initial value of BLKNUM before the transfer
operation has begun) is equal (EQ=l) or not equal (EQ=0) to the new value of
BLKNUM.

(1) Find the row in the DSAT where the transfer label is stored and place

this value in T1l. Set OA(VALUE) to the value of the label, i.e., the position
j in the program string S.

(2) Find the value of BLKNUM such that BA(BLKNUM) < Tl. This operation will
reset BLKNUM to point to the desired new block after skipping unwanted blocks.
(3) Reset the register T to point to the top of the new block.

(4) If blocks were skipped (ICTBK#0), then erase all operators from operator
stack until ICIBK PEEiEfS have been recognized and also erased.

(5) If transfer is from a label or conditional statement, erase the ":",

then, or else.

ko

(6) Reset the program counter D to new value in program string and return

to initial point.

3.2.11 Primary

Primaries appear in two productions, both part of the nonterminal
factor. If N(I)#"4", (Fig. 21), then the primary is simply reduced to factor.
Otherwise, the arithmetic unit is set up (LINK&-1l) by changing the top two
elements of the operand stack from link to wvalue ans storing these values in
the accumulator, A and storage register, X. The exponentiation operation is

performed (EXP&-1l) and the accumulator result placed back on the operand stack.
3.2.12 Factor

Factors are involved in three productions: (1) Simple reduction from
factor to term, (2) Phrase that is reduced to term, and (3) Phrase that will
be reduced again to factor. Of the three productions, the last one must
be considered first because of the operator precedence (Table 3). The sequence
chart (Fig. 21) first checks for S{j]l=+. If true, then the symbol is stored.
Otherwise a check is made to see if N[i] ={Xl/}. If true, the multiplication or
division operatiom is performed and the result is reduced to term. If none

of these operators appear, then the factor is reduced to term.
3.2.13 Term

Terms appear in four productions: (1) A phrase that will be reduced
to term again, (2) A phrase combined with an addition operator that is reduced
to arithmetic expression, (3) a phrase combined with arithmetic expression and
an addition operator that is reduced to arithmetic expression, and (4) a simple
reduction to arithmetic expression. From the operator precedence (Tabtd 3), the

sequence chart (Fig. 21) first check for S[j]={+|—}e This is the first case.

50

o Po
(SRCH=2}——{SA=?h;h)—y——<::>

H¢-countdn ﬂ

[0A(VALUE) Al
&-Countdn I '<
0(XK)e0 ' PA(VALUE)¢=A4
' 4
E(K)f—og— 3
7 , o e
(AR K ‘ : IA=1OQQOhO}é———{lA—lOOOO20)

CINK<1] bsé%4:u

Gfﬁﬁ;¥5;; (USUB=O;;'

Te-countdn I

Fig. 21 Sequence Chart for Primary, Factor, and Term

51

Otherwise the operator stack is checked for N[i] ={+|-|+u|-u}e If one of
these cases is true, execution is performed and the phrase reduced to arith-

metic expression. Otherwise term is simply reduced to arithmetic expression.

3.2.14 Arithmetic Expression

The arithmetic expression is involved in four productions: (1) Phrase
that will be reduced to arithmetic expression again, (2) phrase reduced to primary,
(3) phrase reduced to boolean expression; and (4) phrase reduced to assignment
statement. Based on the operator precedent (Table 3), the sequence chart
(Figure 22) shows that the first check should be for S[jl={+|-}. If yes, S[j]
is stored on the operator stack. Otherwise a check is made for S[j] ={'EQ'|'NE'}.
Again if yes, the symbol is stored on the operator stack. Otherwise a check
is made for the symbol on the operator stack. If N[i] ="(", then if S[j]=")",

a reduction is made to primary (otherwise there is an error). If N[i] =":=",
then a reduction can be made to an assignment statement.

If N[i] ={'EQ'|'NE'}, a reduction can be made to boolean expression.
However some execution must be performed. The top two operands are changed
from link to wvalue (LINKQ—l),_and then the result that has been stored in X
and A are compared. If they are equal, then the register EQ has the value
one, otherwise EQ is set to zero. If N[i] ='NE', the EQ is complemented so

that the register represents the truth of the boolean expression.

3.2.15 Boolean Expression

Now that the boolean expression has been evaluated, it must be
applied to the conditional statement. The first check is to make sure that
N[i]=if (Fig. 23). This operator is erased from the stack and S[j] is tested
for then. If no, then there is an error. The computer is now ready to scan
the conditional statement based on the boolean expression value. If the register

EQ has the value one, the expression is true and the syntax checking continues

52

[S

77N
FRROR&= 11 WAIT
(sa= 2550)+(SA hsz")->-—>!IA«e-N(I)1 :{-—o “’U

A
TA=7L}—> QEi?Q

H&- countdﬂvﬂ
v

(B2

COUNT%=0 FRROR€— 15| [WAIT
EQé~1 b e 0
Ké=countdn K

A 4

(X(o (o)}——’;ﬁQtz;- 0l

v

4
COUNT¢g~countup COUNT
A & cil A
X &= cil X

.f 4 = -
L «{CounT=23)><{Ta=1525—>—fEQeEQ ']

~ #)4

iIéacountdn4Q

Fig. 22 Sequence Chart for Arithmetic Expression

53

after storing then on the operator stack. If EQ has the value zero, then the
expression was false and the computer will skip symbols to avoid evaluating

the then clause until S[j]={else/end/;}. The latter two symbols mean that no
else clause existed. Otherwise if the symbol is else, the computer begins syntax

checking that clause.

54

3.2.16 Assignment Statement

At this point, the arithmetic expression has just been evaluated
and its value stored in the top row of the operand stack. The variable whose
value is to be set has its link stored on the next to the top row of the operand
stack. The sequence chart (Fig. 23) now changes the top row of the operand
stack from link to value (only occurs if the arithmetic expression was simply
a.variable) if necessary. The value of the arithmetic expression is stored
in the accumulator, A. Then this value is placed in the DSAT. The assign-

ment statement is then reduced to basic statement.

3.2.17 Basic Statement and Conditional Statement

After these statements have been recognized, the sequence chart
(Fig. 24) is only concerned with checking for labels. If a label exists, its
link is removed from the operand stack and the colon is removed from the oper-
ator stack. The statement is then reduced to either unconditional statement

or statement.

3.2.18 Unconditional Statement

The unconditional statement can either be reduce directly to a state-—
ment or it could be part of the phrase that will be reduced to conditional
statement. Hence the first check in the sequence chart (Fig. 24) is for sym-

bols then or else. If S[j]=else, this means that the unconditional statement

has just been syntax checked for the then clause and that the else clause
should be skipped. Hence symbols are fetched from memory (SYM¢-1) until

either end or ";" is found and then the phrase is reduced to conditional state-
ment. Otherwise if N[i]={£§ggjgl§g}9 the phrase can be reduced immediately

to conditional statement. If the adjacent symbol is not {Ehggjgl§g}, then

the unconditional statement is reduced to statement.

Ae—N(T)

(IA=3126;EfERROR(-15

= £ 0
iI(—countanl

(ERCH=0)——SERRORe~ 16
<0

[

@ <« countdn K
Ae0(K)

55

---(—?—(6A(TYPE)=0)

@14—0A(Loan

[leT,TeTl

R
FAe-DSAT(T)]

DA (VALUE) #=TA (VALUE)
[e T 1

A
[4

A
Ne~O0A(VALUE)

<=0

ERROR¢—174—ié(0A(T¥PE)39)

ﬁl+.§A<LoEn

Elﬁ-%,T«-Ty

EA@»DSAT(TH

EA(V§éUE)+-AT

DSAT(T)4=TA
gA(VALUE)é—A
A(TYPE)¢=TA(TYPE)

P(K)«0A , Te-T1]

Fig. 23 Sequence Chart for Boolean Expression and Assignment Statement

3.2.19 Statement

The statement is involved in two productions both resulting in
réductions to compound tail. If N[i]=";", then a phrase reduction takes
place. Otherwise the statement is reduced directly to compound tail. At
this point the operand stack is emptied since no references to identifiers

are needed.

3.2.20 Compound Tail

The compound tail is part of three productions: (1) Phrase to be
reduced to compound tail, (2) Phrase to be reduced to compound statement, and
(3) Phrase to be féduced to block. Based on the operator precedence (Table
3), the sequence chart (Fig. 24) first looks for S[{j]";". If yes, the symbol
is stored on the operator stack and control goes back to initial point. This
is the first production mentioned above. Otherwise S[j] must equal end or
there is an error. Now there are two cases: (1) N[i]=";" or'(2) N[i]=begin.

If the latter, then the phrase, compound tail with the begin and end, is re-

duced to compound statement. If the former, the syntax checker looks at the
next operator on the stack. If that is begin, the entire phrase is reduced

to block.

3.2.21 Compound Statement and Block

Because of their symmetry, both block and compound statement can be
represented by the same sequence chart (Fig. 25).

The first execution is that of erasing the block declarations from
the DSAT if it is a block. This is operation 5 described in Section 2.2.3.
Then if there was a label, it is erased. The next symbol is checked to see
if the reduction will be to unconditional statement or program. If S[jl=$§,

then it is the latter.

57

i

£
I

Té~countdn I
Ké&~countdn K

-) \L \r
i IA=L36225 ’{ IA=3025L45 |
I ST = countdn I—p
/g3€ £ &-countdn I
| - 4«—countdn
IIA«—N(I)I——?(IA=3373)—-—->!I«<-coimtdn T
#
St e O
AIT
, RROR¢=10] .
Vo IA=273145) % 4~countdn I G40 /
\WAI # A
\ ‘ # _ -
CPS (TA=2731L5)= é~countdn I}
A
RROR&-T7| < - e
4= 0 H1i=3373r—T<e-countdn T—>fAe=N (1)]

Fig. 24 Sequence Chart for Basic Statement, Unconditional Statement,
Conditional Statement, Compound Tail, and Statement

58

[BAe- STORAJ(BLKNUM)]

3

<= countdn BA
BLKNUMe=countdn BLKNU
=

>
Ae=N(T)

fe—countdn T&—(IA=3333)
#

(T2=53)>—FRRORa~11——AIT)

= ¢~ 0 N

y .
Te-countdn T

END

Fig. 25 ©Sequence Chart for Block, Compound Statement and Program

59

3.2.22 Program

A check is made to see if N[i]=$. If it is true, then the syntax

checking has shown that the program was written correctly.

60

3.3 Statement Description

From the previously described configuration and sequence charts, the
Algol computer is now described by the following CDL statements.

Comment, Description of Algol Computer

Register, J(0-9), $address register for MEM
D(0-9), $Snext address for MEM
S(0-5), $buffer register for MEM
IN(0-5), $address register for INP
INA(0-18), S$buffer register for INP
0u(0-5), $address register for OUT
QUA(0-18) , $buffer register for OUT
K(0-5), $address register for 0
K1(0-5), Stemporary storage for K
0A(0-5), $buffer register for 0
I(0-5), Saddress register for N
11(0-5), $temporary storage for 1
IA(0-18), Sbuffer register for N
T(0-7), Saddress register for DSAT
T1(0-7), $temporary storage for T
TA(0-54), S$buffer register for DSAT
BLRNUM(0-3), Saddress register for STORAJ
ITEMP(0-3), Stemporary storage for BLKNUM
BA(0-7), Sbuffer register for STORAJ
TEMP(0-9), $temporary storage for J

s0(0-12),S1(0-12), Sregisters used with J
STMP (0-17), $register used with S
ICTBK(0-3), Scounter for BLKNUM

TO(0-8), Sregister used with J and T

SA(0-17),
A(0-18),
Q(0-18),
X(0-18) ,
XP(0-18) ,
AP(0-18),
COUNT(0-4),
ERROR(0-4) ,
GR(0-1),
EQ,

SI,

LZ,

ov,

AV,

DV,

MLP,
FM(0-2) ,
ADD,
FA(0-2),
SUB,
FS(0-1),
DIV,
FDI(0-3),
ADDS ,
FAS(0-1),
USUB,

FUs(0-2),

61

Sregister used with S
$accumulator
Smultiplier-quotient register
$storage register

Scounter in exponentiation
$temporary storage for A
$general counter

$error register

$greater indicator

$equal dindicator

$sign indicator

$logical zero indicator

$add subsequence overflow indicator
$add overflow

$divide overflow
Smultiplication

Smultiplication control counter
$addition

S$addition control counter
$subtraction

$subtraction control counter
S$division

$division control counter
Saddition subsequence

S$addition subsequence control counter
Sunary subtraction

$unary subtract control counter

62

EXP, Sexponentiation

FE(0-3), Sexponentiation control counter
SYM, $program symbol

FSY(0-3), $program symbol control counter
SRCH, $special character indicator
LINK, $1link to value

FL(0-3), $link to value control counter
G, $program control

F(0-7), $program control counter

UADD, $unary add

FUA(0-2) Sunary add control counter

Subregister,IA(OP)=IA(13-18),
OA(TYPE)=0A(0-17),
OA(VALUE) =0A(18-36) ,
0A(LOC)=0A(29-36),
TA(NAME)=TA(0-17) ,
TA(TYPE)=TA(18-35),
TA(VALUE) =TA(36-54) ,
A(M)=A(1-18),
X(M)=x(1-18),
Q(M)=Q(1-18),
AQ(M)=AQ(1-36)

Casregister,AQ(0-36)=A-Q(M)

Memory, MEM(J)=MEM(0-1023,0-5) ,

Smemory containing string of program characters

Decoder,

Clock

Terminal,

Switch,

DSAT(T)=DSAT(0~255,0-54) ,
0(K)=0(0-63,0-36),
N(I)=N(0-63,0-18),
INP(IN)=INP(0-63,0-18),
OUT (OU) =0UT (0-63,0-18) ,
STORAJ (BLKNUM) =STORAJ (0-7,0-7)
UAC(0-5)=FUA,
USC(0-6)=FUS,

MC(0-7)=FNM,

AC(0-6)=FA,

SC(0-2)=Fs,
DIC(0-13)=FDI,

ASC(0-3) =FAS,

EC(0-8)=FE,
SYC(0-12)=FsY,
LC(0-14)=FL,

DC(0-193)=F,

P

63

Sdynamic storage ailocation table
Soperand stack

Soperator stack

Smemory input

$memory output

$storage table for block numbers

LETTER=S(0) "#*S (1) #¥S(2) '*(5(3)+S(4)+5(5))+5(0) *

S(2) '*(S(3)+5(4))+£S(0)+5(1)) *5(2) #3(3) '

*S(4) '+5(0) *S(1) "*5(3) "*5(4) '*5(5),

NUMBER=S (0) "#S(1) "*(S(2) "+S(3) "#S(4) "),

C(18)=03

C(0-17)=A(1~18) *x(1-18)+A(1~18) *C(1-18)+X(1~18) *C(1-18)

START(ON) , STOP (ON) , POWER(ON)

64

/POWER(ON)/ ADD¢~0,SUB¢—0 ,MLP¢—0 ,DIV&~0 ,UADD4—0 , G4—0 , USUB¢—0 ,LINK«—0
SYM«—0 , EXPe—0 , ADDS¢—0, OU¢—0, INé=—0, Te—0 , Ké~0 , I¢~0 , BLKNUM<—0
D0 ,SI4—0 ,AVé=0 ,DV4—0 , LZ¢~0 , OV¢—0 , TEMP&—0 , TO¢—0 , ERRORe—0 ,
S0¢—0 ,51¢—10000 ,FM¢—0 ,FAe=0 , FS<~0 , FDI¢~0 ,FAS«—0 , FE¢0 , FSY<0 ,
FL—0,F¢0 ,FUA—O ,FUS«0

/START(ON)/ Ge—1

/STOP (ON) / G40

/DC(0) *P/ IF (G#0) THEN (Fé—1) ELSE (D¢~0)

Comment , Initial Point--begin memory fetch for new character

/DC(1) *p/ SYMé—1,Fe-2

/DC(2) *P/ IF(SYM=0) THEN (F&-3)

/DC(3) *P/ IF (SRCH=0) THEN (IF (NUMBER=1) THEN (F<«30) ELSE(IF (LETTER=1) THEN (F<~40)

ELSE(F¢~4)))ELSE(F&11)

/DC(4) *P/ IF(S=53) THEN(F=5) ELSE (IF (S§=74) THEN(F¢—=5)ELSE (F&6))

/DC(5) *P/ IA¢—S0-S,Fe=13

/DC(6) *P/ IF(S=20) THEN(F¢«—7) ELSE (IF(S=40) THEN(F&7)ELSE(F«—10))

/DC(7) %P/ TA¢—S1-S,F¢e13

/DC(8) *P/ IF(S=60) THEN(Fé~1) ELSE (G40 ,ERRORS1,F¢~0)

/DC(9) *p/ IF (SA=273145) THEN(F<~15) ELSE (F¢—12)

Comment , Increment Box--store symbol in eperator stack

/DC(10) *P/ IA4-0-SA ,F413
/DC(11) *P/ Ié—coumtup I,Fé&-14
/DC(12) *P/ N(I)¢IA,Fe1

Comment , Scan new block for labels-El
Comment, Store labels in DSAT
/DC(13) *P/ BLKNUMé~count upBLKNUM,BA¢~countupT,TEMP (0-9) «J,

Fe—16

/DC(14)*p/
/DC(15) *P/
/DC(16)*P/
/DC(17)*P/

/DC(18) *P/

/DC(19) *p/

/DC(20)*P/

/DC(21)*P/

/DC(22)*P/

/DC(23) *p/

65

STORAJ(BLKNUM)&~BA ,STMP<0 , COUNT¢—1 ,F&-17

SYMé&~1,Fé=20

IF(SYM=0) THEN(F<-21)

IF (SRCH=0) THEN (STMP¢—STMP(6-17) -S ,Fé—17) ELSE(F&-22)

IF(SA=3333) THEN (IF (COUNT#1) THEN (STMP&—0 ,Fé-17)ELSE (F&23))
ELSE (STMPé&~0 ,F&=25)

Té—countup T,TA(NAME)€=STMP ,Fé—24,TA(TYPE)4~222543,

TA(VALUE) &-TO-countup J ‘

DSAT(T)¢~TA, STMP¢&-0,F&~17

IF(SA¥254524)THEN(F6—17,IF(SA=273145)THEN(COUNTé—countup COUNT))

ELSE(COUNT4—countdn COUNT,F&-26)
IF (COUNT#0) THEN(Fé—17) ELSE (SA-273145, J¢~TEMP (0-9) , Fe—27)

Dé&—-countup J,TEMP«—0,F&-12

Comment, Unsigned Number - compute number from string of BCD symbols

/DC(24)*P/
/DC(25) *P/
/DC(26) *P/
/DC(27)*P/

/DC(28) *P/

/DC(29) %P/
/DC(30) *P/

/DC(31) *P/

OA€¢-0,Ke—=countup K,Fé=31

OA(VALUE)€-S0--S, 0A(TYPE)€=272551 ,F&=~32
SYMé-1,Fe=~33

IF (SYM=0) THEN (Fe&=~ 34)

IF (NUMBER#1) THEN (0 (K) é~0A ,Fé~136)ELSE (A¢—0A(VALUE) ,
X€-12 ,MLP&—1,F&-35)

IF (MLP#0) THEN (F&~36)

ADD&~1 ,X&~-50~5 ,F&-37

IF (ADD=0) THEN (OA(VALUE)4&~A ,F&—~32)

Comment, Icdentifier - concatenate string of symbols

/DC(32)*P/
/DC(33)*P/

/DC(34)*P/

OA<«—(,Ke—countup K,Fs—41
OA (VALUE)&—-S0-S , E&—4 2

SYM<=1,Fé=43

66

/DC(35)*P/

/DC(36)*P/

/DC(37)*P/

/DC(38)*P/

/DC(39)*P/

/DC(40) *P/

/DC(a1)*p/

/DC(42)*P/

IF(SYM=0) THEN(Fe—44)
IF (NUMBER+LETTER=1) THEN (OA(VALUE)«—0A (24-36)~S ,F&—42)
ELSE (T1&T, COUNT&—0 , F&—45)
TA¢DSAT(T) ,EQé-1,Fé&46
IF (TA(0)#0A(19)) THEN(EQe~0) ,Fe—47
COUNTé~countup COUNT,TA(NAME)¢—cil TA(NAME) ,0A(VALUE)«&~0A(18)~
0A(20-36)~0A(19) ,Fér50
IF (COUNT#22) THEN (B&—46) ELSE (IF (T=0) THEN (0 (K) ¢—0A , Té=T1, Fé&—53)
ELSE (F&51))
IF (EQ#1) THEN(COUNT¢~0 , Té—countdn T,Fé—45)ELSE(TASDSAT(T) ,
OA (TYPE) €0 ,0A(VALUE)4~0-TEMP~T, T&-T1, Fé—52)

0 (K)«~0A, IF (TA(TYPE)=222543) THEN (F¢~107) ELSE (Fé~53)

Comment, Variable -~ check for correct reduction

/DC(43)*P/

/DC(44)*P/

/DC(45)*P/

/DC(46) *P/

/DC(47)*pP/

IF(S=73) THEN(IA¢~S0-5,F4=13)ELSE (IF(S=13) THEN (IA<«—S0-S ,F<—13)
ELSE (IASN(I) ,Fe=54))

IF(IA=272551) THEN(F&-76)ELSE(IF(IA=73) THEN(F&—76)

ELSE (IF (IA#74)THEN(F&—136)ELSE(F<—55)))

Ile~=I,I¢«~countdn I,F<-56

TA¢-N(I) ,3&~I1,F&=57

IF(IA=252124) THEN(Fé~60)ELSE (IF (IA#316325) THEN(Fé~136)

ELSE (F&~67))

Comment, Read Statement - read variable value from input channel

/DC(48)*P/
/DC(49) *P/
/DC(50) *P/
/DC(51) *p/

/DC(52)*P/

IF(S#34) THEN(ERROR%-2 ,G&~0 ,F&0)ELSE(Ie~countdn I,SYM&1,Fé-61)
IF (SYM=0) THEN (F<-62)

I¢~countdn I,INA<-INP(IN),IN&-countup IN,Tl«<-T,0A~—0(K) ,F=63
0-TEMP-T«~OA(VALUE) , F&—64

TA<~DSAT(T) ,F&=65

/DC(53) *B/

/DC(54)*P/

Comment, Write

/DC(55) *P/
/DC(56)*P/
/DC(57)*P/
- /DC(58) *p/
/DC(59)*P/
/DC(60)*P/

/DC(61) *P/

67

TA(VALUE) ¢~INA,F&=-66

DSAT (T)4~TA,T%=T1,Ké-countdn K,F&=247

Statement - write variable value on output chamnel

IF(S#34) THEN(ERROR&~3,G4~0 ,F«-0) ELSE (I&-countdn I,SYM&-1,F&-70)
IF (SYM=0Q) THEN(Fé=71)

I&-countdn I,T1€T,0A&0(K) ,F&72

O0-TEMP-T«—-0A (VALUE) ,F&-73

TA«-DSAT(T) ,Té~T1,K€-countdn K,Fe&-74

OUA%~-TA(VALUE) ,F&—75

OUT(0U)&«—OUA,OU4~ countup OU,F&=247

Comment, Type List - store variables in DSAT

/DC(62)*P/
/DC(63)*P/
/DC(64) *B/

/DC(65)*P/

/DC(66)*P/
/DC(67) %P/

/DC(68)*p/

COUNT4~0, F&-77

TAe-N(I),F&100

IF(IA=73) THEN(COUNTé~countup COUNT,I&-countdn I,F&—77)ELSE(Fe~101)
IF(IA#272551)THEN(ERROR§~5,G6—0,F(—O)ELSE(COUNTQrcountup COUNT,
TA(TYPE) &~272551 ,F&-102)

0A€~0(K) ;K&=countdn K,T&—countup T,COUNT&—countdn COUNT,Fe-103
0-TA(NAME) €~0A (VALUE) ,TA(VALUE)&-0 ,F&~-104

DSAT(T)«~TA, IF (COUNT#0) THEN(Fé~102)ELSE (F&-105)

Comment, Declaration - continue block scan

/DC(69)*P/

/DC(70) *P/

IF (SRCH=0) THEN (F&-106)ELSE (IF (SA#3373) THEN (F&~106)ELSE (F4~12))

ERROR&~4 ,Ge~0 ,F&-0

Comment, Label - check for label statement or goto statement

/DC(71)*P/

/DC(72) %P/

/DC(73) *P/

TA€-N(I),F&-110
IF(IA=466346) THEN (I&~countdn I,F&~112)ELSE(IF(SRCH=0)THEN(F&~111)

ELSE(IF(SA#3333) THEN(F&-111)ELSE(F&-12)))

ERROR-12 ,G€~0 ,F&~0

od

Comment, Goto Statement - perform bookkeeping and then transfer

/DC(74) %P/
/DC(191) *P/
/DC(192) *P/
/DC(193)*P/
/DC(75)*P/

/DC(76) *P/

/DC(77)*P/
/DC(78) *P/

/DC(79)*P/

/DC(80)*P/

/DC(81)*P/

/DC(82) *P/
/DC(83) %P/
/DC(84) %P/

/DC(85) *P/

/DC(86)*P/
/DC(87)*P/

/DC(88)*P/

/DC(89)*P/
/DC(90) *P/

/DC(91) %P/

0A«—0(K) ,K&~countdn K,ITEMP&~BLKNUM,Fe277
T14~T ,Té~0A (LOC) , F&=300
TA<-DSAT(T) ,F&=301
OA(VALUE)4~TA(VALUE) ,T4~T1,T1¢~T,Fé&=113
BA«~STORAJ (BLKNUM) , COUNT£~0 ,GR4~0 ,Fé&=114
IF(BA(0)#T1(0))THEN(IF(GR=0) THEN(IF(BA(0)=0) THEN (GRe—1)
ELSE(GRe=2))) ,Fe-115
COUNT&-countup COUNT,BA€~cil BA,Tlé&—-cil T1,F&é—116
IF (COUNT#10) THEN(F4~114)ELSE(Fe-117)
IF (GR=2) THEN(BLKNUM&~countdn BLKNUM,F€~113)ELSE(ICTBKe~0,
COUNT&—0,EQe—1, BLKNUM<«—ITEMP , T1&~0 , ITEMP «~BLKNUM, Fe—120)
IF (ITEMP (0)=BLKNUM(0)) THEN (Fe&~124) ELSE(IF(EQ=0) THEN(F«~124)
ELSE(F<«121))
EQ&0 ,BAe~STORAJ (BLKNUM) , ICTBKé—countup ICTBK,BLKNUMé-countdn BLKNI,
Fe~122
TeBA ,Fe-123
Tecountdn T,F&-124
COUNT4~counitup COUNT, ITEMP&-cil ITEMP,BLKNUMé—cil BLKNUM,F&=125
TF(COUNT#4) THEN(F&~120)ELSE(IF(EQ=0) THEN (EQ&-1 ,F«=120)
ELSE (F<—-126))
IF(ICTBK#0) THEN(F4~127)ELSE (F¢~131)
TA¢-N(T) ,F&130
IF (IA#273145) THEN(I¢~countdn I,F--127)ELSE(le—countdn I,
ICTBK<€~countdn ICIBK,Fé&-126)
TAeN(I) ,Fe132
TF (IA=302545) THEN (F&-134) ELSE (IF (TA=436225) THEN (Fewr 134) ELSE(F—133))

IF(IA=3333) THEN(F«~134)ELSE(D«~0A (27-36) ,F<1)

/DC(92) *P/

/DC(93) *P/

169

Ié=countdn I,F%«-~135

TA&-N(I) ,F&-133

Comment , Primary - perform exponentiation if appropriate

/DC(94) %P/
/DC(95) *P/
/DC(96) *P/
/DC(97) *P/
/DC(98) *P/
/DC(99) *P/

/DC(100) *P/

IA&=N(I) ,F&137

IF (1A#5454) THEN(F€~145)ELSE (LINK&~1 ,Fé=-140)
IF (LINK=0) THEN(F&~141)

EXPé&-1 ,Fé-142

IF (EXP=0) THEN(E&-143) -

Ié&~countdn I,0A(VALUE)<&—A ,Fe—144

0(K)«—0A,Fé~145

Comment , Factor ~ perform multiplication or division if appropriate

/DC(101)*P/
/DC(102) *P/
/DC(103) *B/
/DC(104) *P/
/DC(105)*P/
/DC(106) *P/
/DC(107) *P/
/DC(108) *P/
/DC(109) *P/
/DC(110) *P/
/DC(111) *P/
/DC(112) *p/

/DC(113) *P/

IF (SRCH#0) THEN (LF (SA=5454) THEN (E&~1 2) ELSE (R<—146)) ELSE(F&=146)
TA«-N(I) ,Fe-147

IF (IA=54) THEN(F&~150)ELSE(IF (IA=61) THEN(F&-156)ELSE (F&-162))
LINK¢-1 ,F4-151

IF(LINK=0) THEN(F<-152)

MLP&~1,F&-153

IF (MLP=0) THEN (F&-154)

I4~countdn I,0A(VALUE)<-A,F&~-155

0(K)«~0A,F&~162

LINK<~1,Fe-157

IF (LINK=0) THEN (F4-100)

DIV&-1,Fe-161

IF (DIV=0) THEN (Fe&-154)

Comment, Term - perform addition or subtraction if appropriate

/DC(114) *P/

/DC(115) *p/

IF (SRCH#0) THEN(F4~164) ELSE(IF (S=54) THEN(F¢~16 3) ELSE(IF(S=61)
THEN(F4~163) ELSE (F&-164)))

IA<-S0-S,Fe=13

70

/DC(116) *P/ IA¢N(I),F&165
/DC(117) *p/ IF(IA=1000020) THEN (Fé&=166) ELSE (IF(IA=1000040) THEN (F<~171)ELSE
(IF (IA=20) THEN(F<-173) ELSE(IF (IA=40) THEN (F--201) ELSE (F&=205))))
/DC(118) *P/ UADD«~1,F4-167
/DC(119) *p/ IF (UADD=0) THEN (F¢=~170)
/DC(120)*P/ Ié—countdn I,F&=205
/DC(121) *P/ USUB&~1,F€~172
/DC(122) *P/ IF (USUB=0) THEN(F4~-170)
/DC(123) *P/ LINK¢—1,Fé174
/DC(124)*p/ IF (LINK=0) THEN(F¢~175)
/DC(125) *P/ ADD4~1,F¢&-176
/DC(126) *P/ IF (ADD=0) THEN (Fé~177)
/DC(126) *P/ OA(VALUE)<—A ,F&-200
/DC(128) *P/ 0(K) €0A ,F&170
/DC(129) *P/ LINK<~1 ,F&~202
/DC(130) *P/ IF (LINK=0) THEN (F<~203)
/DC(131) %P/ SUB«—1 ,F€-204
/DC(132) *p/ IF (SUB=0) THEN(F<177)

Comment , Arithmetic Expression - compute boolean expression if appropriate

/DC(133)*P/ IF (SRCH=0) THEN (IF (S=20) THEN(F€~206) ELSE(IF(S=40) THEN(F4-206)
ELSE (F¢~207))) ELSE (IF (SA=2550) THEN(F¢-12) ELSE(IF (SA=4525)
THEN (Fe~12) ELSE (F&=207)))
/DC(134) *P/ IA4-S0-S,F413
/DC(135)*P/ IA4-N(I) ,F<210
/DC(136)*P/ IF (IA=74) THEN(F€-211)ELSE(F¢~213)
/DC(137) *p/ IF (S#34) THEN(ERRORé~14 ,G¢~0,F&0) ELSE(I&-countdn I,SYMé1,Fe212)

/DC(138) *P/ IF(SYM=0) THEN(F<-136)

/DC(139) *P/

/DC(140) *P/
/DC(141) *P/
/DC(142) *P/
/DC(143) *P/
/DC(144)*P/

/DC(145) %P/

71

IF(IA=13) THEN(I&=countdn I,F4~232)ELSE(IF(IA=2550)THEN(F¢—214)
ELSE(IF(IA=4525)THEN(F4~214)ELSE(ERROR&~15 ,G4~0,F¢~0)))
LINK&-1 ,F&-215

IF (LINK=0) THEN (F4-216)

COUNT4~0 ,EQ¢~1,Ké=countdn K,F&=217
IF(X(0)#A(0))THEN(EQ¢-0) ,F€-220

COUNT4~countup COUNT,A4~cil A,X&-cil X,F&-221
1F(COUNT#23)THEN(Ee—217)ELSE(IF(IA=4525)THEN(EQémEQ'),

Ié—countdn I,F&-222)

Comment , Boolean Expression - check conditional statement

/DC(146) *P/
/DC(147) *P/
/DC(148) *P/
/DC(149)*P/
/DC(150) *P/
/DC(151) *B/
/DC(152) *p/

/DC(153) *P/

TA«-N(I) ,F&-223

IF (IA#3126) THEN (ERROR«15 ,G&~0, F€~0) ELSE (I 4 countdnI,F<224)

IF (SRCH=0) THEN (F¢-225)ELSE (IF (SA#302545) THEN (F&-225) ELSE (F&-226))
ERROR4~16 ,G¢~0 ,F<~0

IF(EQ=1) THEN(Fe-12) ELSE (F&~227)

SYMé-1 ,Fe=-230

IF (SYM=0) THEN(IF (SRCH=0) THEN(F¢--227) ELSE (F&-231))

IF(SA=436225) THEN(F4~-12) ELSE (IF (SA=254524) THEN (F4&~260) ELSE (IF(SA=3373)

THEN (F4-260)ELSE (F€~227)))

Comment, Assignment Statement - store assigned value in DSAT

/DC(154) *P/
/DC(155) *P/
/DC(156) *P/
/DC(157) *P/
/DC(158) *p/
/DC(159) *P/
/DC(160) %P/

/DC(161) *P/

0A€-04K) , F¢~233

IF (OA(TYPE)#0) THEN (Fe~237) ELSE(T14~0A(LOC) ,Fe—234)
Tl¢=T,T¢~T1,Fe-235

TA4~DSAT(T) ,Fe—236

OA(VALUE) &~TA(VALUE) , T¢~T1,F¢~237

A<-OA(VALUE) ,Ké-countdn K,F&—240

0A¢=~0(K) ,F¢~241

IF(OA(TYPE#0) THEN(ERROR%~17 ,G¢-0 , F4=0) ELSE (T1&=0A(LOC) ,F¢~242)

72

/DC(162) *P/
/DC(163) *P/
/DC(164) *P/
/DC(165) *P/

/DC(166)*P/

Comment, Basic

/DC(167) *P/

/DC(168)*P/

Tl¢~T,T&T1,Fé-243

TA€<DSAT (T) ,F&=244

TA(VALUE) ¢~A,F&-245

DSAT(T) €~TA,0A(VALUE) &A ,0A(TYPE) ¢~TA(TYPE) ,F&246
0(K)¢~0A,T¢T1,F&-247

Statement

TA&N(I) ,F&-250

IF(IA#3333) THEN(F<~-251) ELSE(I4¢~countdn I,K4~countdnK,F&247)

Comment, Unconditional Statement

- /DC(169) *P/
/DC(170) %P/
/DC(171) *P/
/DC(172) *P/
/DC(173)*P/
/DC(174) *P/

/DC(175) *P/

IF(SRCH=O)THEN(F<—252)ELSE(IF(SA=436225)THEN(F<—255)ELSE(F<—252))
TA«N(I),F«4-253
IF(IA=302545)THEN(F€—254)ELSE(IF(IA=436225)THEN(F€—254)ELSE(F<—262)
I¢-countdn I,F<-260

SYM4~1 ,F&-256

IF (SYM=0) THEN(IF (SRCH=0) THEN (F¢=255)ELSE (F&257)

IF(SA=254524) THEN (F4—260)ELSE (IF(SA=3373) THEN(F&-260) ELSE(F<-255))

Comment, Conditional Statement

/DC(176) %P/

/DC(177)*P/

TA&€N(I) ,Fe-261

IF(IA=3333) THEN(I4~countdn I,K<€-countdn K,F&-260)ELSE(F&-262)

Comment , Statement

/DC(178) *P/

/DC(179) *P/

TA4-N(TI) ,F¢~263

IF(IA=3373) THEN(I&~countdn I),K&~0,F&-264

Comment , Compound Tail

/DC(180) *P/

/Dc(1815*P/

/DC(182) *P/

IF(SRCH=0)THEN (F4~265)ELSE (IF (SA=3373) THEN(F&12) ELSE (IF (SA#254524)
THEN (F€=~265) ELSE (F&-266)))
ERROR<-6 ,G4-0 ,F&-0

IA&-N(I) ,F4-267

/DC(183) *P/

/DC(184) *P/
/DC(185) %P/
Comment , Block
/DC(186) *P/
- /DC(187) *P/
/DC(188) *P/

/DC(189) *p/

73

IF(IA=273145) THEN(I&~countdn I ,F&-272)ELSE(IF(IA#3373)THEN
(ERROR4~7 ,G&=0 ,F4~0)ELSE (I€~countdn I,F4&-270))

TA<N(I) ,F&271

IF(1A=273145) THEN(I4~countdn I,F4-272)ELSE(ERROR&~10,G&0,F<-0)
and Compound Statement

BA<-STORAJ(BLKNUM) ,F¢-273

S5YMé&~1,Té~countdn BA,BLKNUM--countdn BLKNUM,F&-274

TA€N(1) ,IF(SYM=0) THEN(F%=~275)

IF(IA=3333) THEN(I%-countdn I,F4-274)ELSE(IF(SRCH#0) THEN(F4&-252)

ELSE€IF(S=53) THEN(F4-276) ELSE(F4~252)))

Comment, Program

/DC(190) *P/

IF(IA#53) THEN(ERRORé~11,G4¢~0,F4-0)ELSE(Ié~countdn I)

Comment, Here Begins Special Rautines

Comment, Fetch
/SYC(0)*P/
/8YC(1) *p/

/SYC(2)*P/

/SYC(3)*P/
/8CY (&) *P/
/SYC(5) %P/
/SYC(6) *P/
/SYC(7)*P/

/8YC(8)*P/

/SYC(9)*P/

/SYC(10) *P/

character from memory

IF(SYM=1)THEN(J#%~D,SRCH4~0 ,FSY4~1)

S€~MEM(J) ,Dé~countup D,FSYe-2

IF(S=14) THEN(FSY=3)ELSE(IF(S=33) THEN(FSY<6) ELSE(IF (S=54) THEN(FSY4-12)
ELSE(SYM&-0,FSY4-0)))

J&-D,S5A%~0 ,SRCH&1,FSY&4

S¢—MEM(J) ,Dé=—countup D,FSY&5

IF(S=14) THEN (SYM&-0 ,FSY¢~0)ELSE (SA¢-SA(6-17) -S ,J&D,FSY&—4)

SA<0,J4D,FSY4~7

S4-MEM(J) ,Dé-countup D,FSY4-10,SA(12-17) ¢S

IF(S=73) THEN(FSY4~11) ELSE (IF(S=33) THEN(FSY&~11) ELSE

(S¢-33,J&-countdn J,Décountdn D,SYM&0,FSY<~0))

SA€-SA(6~17)-5,J4-D,S¥M%0 ,FSY<-0 ,SRCH&~1

SA¢-0,J4=D,FSY&-13

74

/SYC(11) *P/

/SYC(12)*P/

Se&-MEM(J) ,Dé&countup D,FSY<«~14,SA(12-17)&-S
IF(5=54)THEN(FSY<¢~11) ELSE (S&-54 ,Jé~-countdn J,Dé-countdn D,

SYMe—0 ,FSY€~0)

Comment, Change operand from link to value

/LC(0) *P/
/LC(1) *p/
/LC(2) *P/
/LC(3) *P/
/LC(4) *P/
~ /LC(5) *P/
/LC(6) *P/
/LC(7)*P/
/LC(8) *P/
/LC(9) *p/
/LGC(10) *P/
/LC(11) *P/
/LC(12)*P/
/LC(13) *P/

/LC(L4) *P/

IF (LINK=1) THEN(FLé~1)

0A€-0(K) ,FL&-2

IF (OA(TYPE=Q) THEN(FL4~3) ELSE(FL&~7)
T1¢=0A(LOC) ,FL&~4

T1&T, T4=T1 ,FL&=5

TA<-DSAT(T) ,FL&6

OA(VALUE) ¢-TA(VALUE) ,Té~T1,FL&7
X4~0A(VALUE) ,K&-countdn K,FL&10
0A&0 (K) ,FLé~11

IF(0A(TYPE)=0) THEN(FL¢~12) ELSE (FL4~16)
T1€~0A(LOC) ,FL&~13

T1e=T ,T4=T1 ,FL&~14

TA4=DSAT(T) ,FL&15

OA(VALUE) ¢~TA(VALUE) , OA(TYPE)¢—TA(TYPE) ,T4-T1,FL&~16

A4—OA(VALUE) ,LINK4-0 , FL&0

Comment, Add Sequence

/AC(0) *B/
/AC(1) *p/
/AC(2)*p/
/AC(3) *P/
/AC(4)*P/

/AC(5)*R/

/AC(6) *P/

IF (ADD=1) THEN(FA<-1)

SI1¢~0,0Vé~0 ,LZ&~0 ,AV¢—0 ,FA€~2

IF(A(0)#X(0)) THEN(SI€~1,X (M)&=X(M) ') ,FA&3

ADDSé~1 ,FA%~4

IF (ADDS=0) THEN (FA¢~5)

IF(ST*OV'*LZ'=1) THEN(A€=A') , IF(SI '%0V=1) THEN (AV&-1) , IF(ST*OV'*LZ=1)
THEN(A4=0) , IF (SI*OVALZ'=1) THEN(A(M)é—countup A(M)) ,FA&—6

ADD¢~0 ,FA&-0

75

Comment , Subtract Sequence

/8C(0) *P/
/8C(1)*p/

/8C(2) *p/

IF(SUB=1) THEN(FS<-1)
X(0)€-X(0) ' ,ADD%~1,FS&-2

IF(ADD=0) THEN(SUB%~0 ,FS4~-0)

Comment, Add Subsequence

/ASC(0) *P/
/ASC(1) *P/
/ASC(2)*P/

/ASC(3)*P/

IF (ADDS=1) THEN(FASé-~1)
A(1-18)&~A(1-18)8X(1-18)#C(1~18) ,FAS&2
IF(C(0)=1) THEN(OV&-1) ,FAS&~3

IF(A(M)=777777) THEN (LZ4=1) , ADDS&~0 ,FAS &0

Comment, Multiplication Sequence

/Mc(0)*p/
/MC{1) *P/
/MC(2) *P/
/MC(3) %8/
/Mc(4) *p/
/MC(5) *P/
/MG(6) *P/

MC(7) *p/

IF (MLP=1) THEN(FM¢~-1)

O0V4~0 ,LZ4=0 ,SI¢=0,Q(0) &0 ,F =2
IF(A(0)#X(0)) THEN (SI&=1) ,FM&-3

COUNT&~22 ,Q(M) =X (M) ,X€~A , A€~0 , FMé—~4

COUNTé~countdn COUNT,IF(Q(18)#L) THEN(FM<-6)ELSE(ADDSE~1,F}M-5)
IF (ADDS=0) THEN (FMé&-6)

AQ(M)%¥~shr AQ(M) ,A(1)%~O0V,IF(COUNT#0) THEN (FMé~4)ELSE (FMé~7)

IF(SI=1) THEN(A(0)4~1,Q(0)&~1) ,A(M)&Q(M) , Q(M)&~A(M) ,MLP&~0 ,FMe&~0

Comment, Division Sequence

/DIC(0) *P/
/DIC(1) *P/
/DIC(2) *P/
/DIC(3)*P/
/DIC(4) *P/
/DIC(5) *P/
/DLC(6)#P/

/DIC(7) *P/

IF(D1V=1) THEN(OV€~0,LZ%-0 ,DV£~0,514~0,Q(0)4~0,FDI&~1)
X(M)%-X(M)* ,IF(A(0)#X(0)) THEN(SI&~1) ,ADDS&—1 ,FDI4—2

IF (ADDS=0) THEN(FDI¢~-3)

IF(OV+LZ=1) THEN(DV&~1,DIVé&~0 ,FDI&-0) ELSE(A(M)<€-A(M) ' ,FDI&4)
IF(SI=1) THEN(Q(0)é~1) , ADDS¢~1,FDI4~5

IF (ADDS=0) THEN(COUNT%~22 ,LZ&-0 , FDL&&=6)

IF(OV=0) THEN(A (M) €~A(M) ') ,FDI4-7

AQ(M) &-shl AQ(M) ,0V&-A(1) ,ADDS%1 ,FDI<-10

76

/DIC(8)*P/
/DIC(9) *P/

/DIC(10) *P/

/DIC(11) *P/
/DIC(12) *P/

/DIC(13)*P/

IF (ADDS=0) THEN(IF (LZ=1) THEN(OVé~1) ,FDI4~11)
IF(OV=0)THEN(A(M)4&-A(M) ')ELSE (Q(18)é~1) ,FDI&~12
COUNT€~countdn COUNT,IF(OV=0)THEN(ADDS<-1,FDI4-13)
ELSE (A(M)&~countup A(M),FDI&-14)

IF (ADDS=0) THEN (FDI&~14)

IF(OV=0) THEN(A(M)&=-A(M) ') ,FDI4=15

IF (COUNT#0) THEN (FDI%~7) ELSE (A€=Q, DIV€~0 , FDI&~0)

Comment, Exponentiation Sequence

/EC(0) *p/
/EC(1)*P/
/EC(2) *P/
/EC(3) *P/
/EC(4) *P/
/EC(5) *P/
JEC(6) *P/
/EC(7)*p/
/EC(8) *P/
Comment , Unary
/UAC(0) *p/
JUAC(1) *pP/
/UAC(2) *P/
/UAC(3) *P/
/UAC(4)*P/
/UAC(5) *p/
Comment , Unary
/usc(0) *p/
/usc(1) *p/

/UCS (2) *P/

IF (EXP=1) THEN (FE<~-1)

IF(X(0)=1) THEN (EQé&1) ELSE (EQe&~0) ,FE¢-2
IF(X(M)=0) THEN(A<=]1 ,EXP€~0 ,FE&-0) ELSE(FE&3)
XP&-X ,X€=A AP&A ,FE&4

MLP&-1,FE&-5

IF (MLP=0) THEN(XP&~countdn XP,FE&6)

TF(XP#0) THEN (X-AP ,FE&~4) ELSE(FE~7)

IF (EQ#1) THEN (EXP&~0 ,FE&~0) ELSE(A4—1,X€A,DIV<1,FE4&10)

IF(DIV=0) THEN(EXP%~-0 ,FE&0)
Addition Sequence

IF(UADD=1) THEN (0Aé~0(K) , FUA&~1)

IF(OA(TYPE)#0) THEN (UADD&~0 , FUA4~-0) ELSE (T1é~0A(LOC) ,FUA&~2)

Té&~T1,T1&T ,FUA&3

TA4-DSAT (T) ,FUA&4

OA(VALUE) é=TA(VALUE) ,0A(TYPE)&~TA(TYPE) ,FUA&-5
T4~T1,0(K) €=0A ,UADD4~0 , FUA&-0

Subtraction Sequence

IF(USUB=1) THEN(OA<~0 (K) ,FUS&~1)

IF (OA(TYPE) #0) THEN (FUS<~5) ELSE (T14-0A(LOC) , FUS&-2)

T&-T1 ,T1&T,FUS€=3

/USC(3) *P/
/USC(4)*P/
/Usc(s)*p/

/USC(6) *P/

TA&-DSAT(T) ,FUS&4

OA(VALUE) «~TA(VALUE) , OA(TYPE) €=TA(TYPE) , T~T1 ,FUS&~5
0A(18)«€~0A(18) ' ,FUS4~6

0(K) €=0A ,USUB~0,FUS&~0

END

77

78

4, Simulation

The description of the Algol computer given in the previous chapter
is in terms of the general form of CDL. However, there exists an actual im-
plementation of CDL, called CDL3, that is available at the University of
Maryland [6]. This chapter describes the changes in the CDL simulation pro-
gram that were necessary to use the CDL3 program. A sample program is given
that illustrates how the ALGOL computer functions.

4,1 Changes in Program

In order to run the CDL simulation on the IBM 7094, it was necessary
to make certain types of changes in the program:
(1) Differences between CDL statements and operators and CDL3 statements and
operators must be corrected. For example, the operation '"countup A" becomes
"A,COUNT.". However, the biggest change is that the indices that were decimal
numbers must now be expressed as octal numbers.
(2) 1In CDL, there is no provision for actually exhibiting external control
of a program. All operations must be done during the clock cycles. However,
one would like to load the program of the simulated computer into memory before
the clock cycling begins. This operation is possible in CDL3. Also the switches
are set by special external control cards to correspond to an operator switch-
ing on a computer comnsole.
(3) CDL3 provides a output format for printing register and switch values. In
order to print out information at every cycle, sets of CDL statements have been
combined into one statement whenever possible.
(4) CDL assumes an unlimited amount of space is available for the program.
However, the CDL3 program is greatly limited. Hence for this example, certain
hardware subroutines (division and exponentiation) that are not needed have

been omitted.

79

4.2 Sample Program

The following Algol program was chosen to illustrate the function-
ing of the computer.

$'BEGIN' "INTEGER' A,B; 'READ'(A); B=A+2; 'WRITE'(B) 'END'$

This program string is loaded into memory in a slightly altered form
because of the CDL3 format limitation requiring octal input. Hence,
M(0)=53,M(1)=14,etc., corresponds to reading in the octal BCD equivalent to
the alphanumeric character. Notice that the characters are read in one at a
time and storedone character to a memory word. It is also necessary to set
‘up the input channel INP since numbers are read from this chamnel by the simu-
lated computer. For this example, there is only one read inst;uction and thus
only one number is needed. The value for A was chosen to be octal 15 and thus
INP(0)=15. After the simulation is over, one expects the output channel OUT

to have octal 17 as its only value.

4.3 Description of program operation

The listing of the simulated computer program appears in Figures
26-31. In the beginning of the listing, there are the standard_twelve control
cards common to all CDL3 programs. Following these cards, is the CDL3 descrip-
tion of the ALGOL computer. Finally after the "$SIMULATE" is a set of control
cards descfibing the output format, switching, and presimulation status of the
computer.

To get a true feeling for the computer operation, it would be best
to examine the output at every clock pulse. The simulation does have this output
but it would be too costly to include it in this paper. However, one can summar-
ize the operation in a few steps (Table 4). The table is divided into four columms.
The first column lists the range of the clock time during which the series of

operations occured. The second columm shows the flow of control between the non~

80

$IBSYS : o

$* MOUNT TAPE 1090 ON 49, RING OUT AND SAVE
F THANK YDU

$PAUSE

SATTACH A9

145 SYSLR4

$REWIND SYSLB4

$LAECUTE USER

sl BLOOM*001/11/728%5M%T5P4

$COL3
P TRANSLATE
VAN

CCMMENT,SIMULATION CF ALGUL COMPUTER IN COL

REGISTER,
REGISTER,
RELGISTER,
RIGISTER,
RUGISTER,
REGISTIER,
REGISTLCR,
REGISTER,
REGISTER,
SUBRFGISTER
SURREGISTER
1

JI0-11)eD(0-11),S5(0~-5),IN(O~5),INA{O-22),0U(0-5}),0UA(D~22)
K{O=5};K1L(0=~5),0A00-44), 1{0=-5),11(0-5),IA(0~22),T(0=-T)
TLIO=T Y, TALO=66) , BLKNUM{O=3), ITEMP{0=-3)BA(0=T7), TEMP(O~-11)
SO(0-14),S1{0~14%),STMP(0-21),ICTBK{O0-3),TO(0=10}
AlO=22),000-22)4X{0~22),AR(0=22),AP(0~22),XP(0~22)
CHNT{O0-4) s CRROR(O0=4) o GRID-1 1 Q53 L2yOVAV DV MLY
FMIO=2),ADD, FA(Q-2),5UB, FS{O=1),DIV,FDI{0-2),ADLS
FAS(O=-1) USURGFUSLO-2),EXP,FE{O-3) SYM,FSY(0~3), SRCH
LINKGFLIO=3) G F{O=-T7);UADD, FUALU=2),SA(C=-21)
TA(DPY=TA(L15-22)Y,0A(TYPEOD)=UA(0=-21),DA{VALUEN) =0A(22~44)
TAINAVE)=TA(O-21), TALTYPEYI=TA(22-43) , VA{VALUEY=TAL44-5606),
AMMI=A(L=-22) ¢ XIMX)=X({1-22),Q(00)=0(1-22)

MiMORY MEMEJ)=MEM{O=-1T7T7T7,0~5),

1 DSATIT)I=OSATIO=-377,0-66),

1 D(K)=C{0-TT7,0-44),
1 N{DY=N(D-77,0-22)

MEMORY, INPLINY=IHP(NO-TT,0-221),
1 QUTIOUY=0UTL0=-77,0-22),
1 STORAJ(BLKNUM)=STORAJ(O-T,0-7)

DECODERS UAC(0-5)=FUA,USC{0-6)=FUSMC(O-T)=FM,AC(0~6)=FA

DECADER, SC(O=-21=FS,01C{0~15)=FNI,ASC10O~3)=FAS,EC{0~-8B)=FE,

1 SYC(0=-14)=F3Y,LC(0-16)=FL,,DC(0~302)=F

CLOCK, P

SWITCH, START(CN) ,STOP{ON) POWER (ON)

TERMINAL, LETTER=S(O)*#S(1)1*5{2)0(S{3)+S(4)+S(5)1+S5(01*5(2) ' *(S(3)+
1 S(a)I+(S(OV4SLLIIRS{2)5S(3) .5(4) +SL0I=S(L) 453} '%5(4)*%5(5),
1 NUMBER=S{0) %S {1)**(5{2)¥+5(3)'%5(4)*)

/PDVERIDNY/
/PUOWERIONY/
/POVER(ON)/
/PONER(ONYY/
L /POWER(ON)/
JSTARTLONY/
/STOPULONY/
/uCloysp/

ADD=0,SUB=0,MLP=0,DIV=0,UADD=0,5=0,USUB=0,LINK=0,5YM=0
EXP:O, AOU5=\)QHU=OQ [N=Ue T=O.K=O,l=(),ULKNUM=0,U=O

TCMP=0 gSI=Os AV=07UV=09LZ=0yUV=UySl=10000

T0=0, ERROR=0,S50=0, FM=0:FA=0,F5=C,FDI=0,FAS=0
FE=0,FSY=20eFL=0,F=0,FUS=0,FUA=0, TA=C;CA=0,14=0,J=0

G=1

G=0

IF{C.NE.0) THENIF=1IFLSE(J=0)

COMMENT, INITIAL POINT

/uC1r«p/
/0CL2) %P/

70CLaYRp/

SYM=1,4F=2 :
TF{SYMFQ.O0YTHEN(TF{SRCH.EQ.O)THEN(IF{NUMBER.EQ. 1} THER(F=
B30)ELSE(TIF(LETTERLEQ LI THENIF=40YELSE(F=4)1YELSE(IF(SA.EQ.
273145)THENIF=15)ELSE{IA=0~SA,1=1.C0UNT.,;F=14)})
TF{(SeENa53)+1S.ENT4))ITHENIIA=S50~S,1=1.COUNT,, F=14)ELSEL
TF((S.EQ.20)4(SatQa4D)ITHEN(IA=S1I~S, I=1.COUNT.,F=14)FELSEL
TF{S.EG.60) THON(F=L)ELSULG=0,ERRUR=1,F=0)))

COMMENT s INCREMEONT BCX

JDCLL3) %P/
1DCEYay vy

1=1.COUNT,,F=14
HEIY=Y A, b =1

COMBENT, SCAE NEW BLOCK Uk LARILS-E]

Fig. 26

cDL3 Program listing 1

/0C{15) %P7
JDC{16) P/
/0CL20) %P/

ADCL23) %P/

/0C124) %P/

81

“BLENUK=BLEKNUHCOUNT o s BAS T COUNT . 3 TEMP(O-11)=J.F=16

CSTORAJ{RLEMUM)=BA, STMP=20,CNT=1,S5YM=1,F=20

IF(SYVM.EQ.0} THEN!
CIF{SRCH.EQ.O)THEN{STMP=STMP{6-211-5,SYM=1)ELSE(
IF(SAEN3333)THEN(IF(CNT.NE, 1) THEN{STMP=0,SYM=1)ELSE(F=23

“YIELSELSTMP=0,

1F{SANE. 254524) THEN(F=20,SYM=1 ;IFISA.EQ.273145) THEN(CNT=
CNT.COCUNT.) IELSE(CNT={CNT?COUNTY?,F=26)11))

T=T.COUNT ., TA{NAME)=STMP,F=24,TA{TYPE)=222543,
TA(VALUF)=TO-J

DSAT(TI=TA;STMP=0,F=20,SYM=1

JUCL261%P7 TF(CNT NCLOYTHENISYM=1,F=20)ELSE(SA=273165, J=TEMP(0-11),

TEMP=0,F=14,1A=27314%,1=1,COUNT,)

COMMENT UNSIGNED MUMBER

/DCL30) %P/
JuC(31)%p/
/UC{32)¥p/
/UC(33)%P/

7DC135) %p/
JLC(3T)V*p/
CUNMMENT,
JDCL40) %P/
Deta2)xp/
7aCa3yxp/

/0C(45) %P/

JUCL4o) %p/
JUCI50) %P/

/0C(52) %P/

0A=0,K=K.COUNT.sF=31

OA{VALUED)=S0-S; 0A{TYPED)=272551,F=32

SYM=1,F=33

TF(SYVM.EQ.O) THENI IF(NUMBERMNE L) THENIO(K) = OA F= 136)FLSE(A‘
OA(VALUEQ) : X=12,HLP=1,F=35))

IF(MLP.NE.O) THEN{ ADD=1,X=50-5,F=37)
’F(ADDGEQyO)THEN(OA(VALUED)=A§F=32)

ICENTIFIER

OA{TYPED) =0, K=K.COUNT . ; UA{VALUCGQ)=50-5,F=42

SYM=],F=43
TFISYVFOLOYTHENCIF{(NUMBER+LETTLR)-EQe 1) THEN(OA(VALUEC)=
DA(30-44)-5,F=42)ELSE(T1=T,CNT=0,F=45))

CTA=DSAT(T), €071, F=46

TF(TAINAME) . NF.0OA(23~44)) THEN{EQ=0),F=5C
[F({T.EQ.CITHENIO(K)=0A,T=TL,F=53)1ELSC!

F=531ELSEL ' ’

TF{EQaAE LITHENICNT=0,T={T?.COUNTL) s F=45)ELSE(TA=DSAT(T),
OA(TYPEDQ) =0, OAIVALUED)=0~-TEMP=-T,V=T1,F=52))

O(K)=CAy IF(TA(TYPE).EQ.222543) THEN(F=107)ELSE(F=53)

CCMMENT , VARTABLE

10C{53)y%p/

/0C154)%p/

/0C156) %P/
/DC(STY*P/

IF{{SRCH.FQ.0Y*¥{ (SLEQ. 73)+(S EQ-13)))ITHEN(1A=S0~5,F= 13)
ELSE{1A=N{1),F=54)

[F(IALEN.27255) THEN(F=T6)ELSEIIF(TALEQ.73)THEN(F=75)
CLSE(TFLIANELTA)THEN(F=136)FLSCH

Fl=1,1=11% .COUNT.)}®,F=561))})

TA=N(I),I=11,F=57

TF{TALEN.252124) THENI F=60)ELSELIF{TALNE.3L16325)THENIF=136}
ELSE(F=6T))

COMMENTyRRAD STATﬁMENT

/DCL60)Y %P/
/DCL6LY*PY/

JLUCL63) %P/
/DCLHa Y%/
/DL 65y *p/
fUC L6y *P/

CCMMENT, WRITE

/DCLuT)*P/

JLCLTOY B/

1F(S . NE234)THEN(ERROR=2,G=0,F=0)ELSE(I=(]*.COUNT.)?,
SYM=1,F=61) '

TF{SYV.E0.0) THENY

I=(1¢,COUNT.)*s INA=INP(IN); INSINaCOUNT.; T1=T,0A=CK},F=63)
T=0A{25-44),F=b64

TA=DSAT(T),; F=65%

TAIVALUE) = 1A, F=66

DSATITI=TA,T=TleK=(K’ COUNT Y ?,F=247T :
STATEMENT
TF{SeNE.34)THENIERROR=3,G=0,F=0)}ELSE(T=(I*.COUNT.)?,
SYM=1;F=70) ’
IFISYN . TQ.O0)}THEN(F=T1)

JUC LTI %07 =01 o CAUNT Y7, TL=T,(A=0(K}F=T2

JLC L2)®py T=0A(3%9-44),F=73

JuLtl ey TAZUSATIT) o TeTl, Ka{K? COUNTLY S, 0 =T4

/BC{T4)*P/ QUASTAIYALUE),F=215

3 A vl SEL .Y GUTIOU) z00A, 88 =0u. CoutlT. F=247
Fig. 27 CDL3 Program Listing 2

82

COMMENT, TYPE LUST

fGC(T6) %P/
JuCt12y*py

/UC L1100 *p7

IDC(102) #ps
JUC(103) *p/
JUCLL04) %P/

CNT=0,F=277

TAsN{ 1), F=100

{F (IA@EQ»73,THEN‘CNT’CNTBCDUNTB91=‘!'QCDUNTD)’0F=77’ELSE‘
!F(IAoNE=272551!THEN(ERROR=57G=01F=0)ELSE(CNT=CNT.COUNT.g
TA(TYPE’=2725519F=102vI=(['oCOUNTa)'))
OA=D(K):K={K'=C0UVT.)'9T=T.CUUNT.oCNT=(CNT’.COUNT.)'1F=103
TA(NAPE)=DA(23—4#).TA!VALUE)=O,F=104
DSAT(T)=TAsIF(CNT;NE.O)THEN(F=102)ELSE(F=105)

CCMMENT, DCCLARAT TON

70CL105) %p/

CCHMENT 4 LABEL

/0CL10T %P/
/0C(L10) *p/

IF((SRCH)*(SAQEQ.3373))THENfF=13'lA=0-SA)ELSE(ERROR=4,
G=0,F=0Q)

TA=N(T},F=110
!F(IAQEO.466346)THEN(1=ll'»CDUNYe)’vF=112)ELSE(1F(SRCH.EO.
O)THEN(ERROR=129G=OyF=0)ELSE(IF(SA.NE,3333)THEN(ERROR=12.
6G=0,F=0)ELSE{F=13,1A=0~5A)))

CCMMENT,GCTO STATCMENT

J0CLL12)*py
10C(2T7) xp/
70C(300)2p/
/DC(30L)#p/
70C(113)%py
JUC(LL4) 2P/

JUC(116)2p/
/OC(120)%n/
/0C1122)¥p/
10CEL24) 4Py
/DC(125) #p/
/0CL126) 407
IDCL127) %P7
70C(130) #p/
10CL132) 40/
JUC (133) *ps

fUCLL35)%p/

DAO{K Y, K=(K*.COUNT.) Y ITEMP=BLKNUM, F2277

TL=T,T=NA(35-441,F=300

TAZDSAT(T),F=301

OATVALUEO)=TAVALUE), T=T1,T1=T,F=113

BA=STORAS{BLKNUNY o CNT =0, GR=D, F=114

TFIBACO)oNELTLI(0) ITHEN(IFIGR JEQW0) THEN(IF (BA(D) -£0.0)

THEM{GR=1)ELSF(GR=2))),

CNT=CNTo COUNT <y BA=BA(=7 1=BA(0), T1=T1(1=7)=T1(0) ,F=116

TF(CNTLNE IO THENEF=114)ELSCL

TFIGR.EDG2)THEN{LKNUM= (BLKNUM® LCOUNT. 1%, F=113)ELSE(1C TBK=

OgCNT=CyEO=19HLKNUM=ITEMP,ITFMP=HLKNUM,F=120))

TFLTTENMDLO0) o FOLBLKNUSI0)) THEN(F=124) ELSE(TF(E0.60.0) THEN(F

S124)ELSELEQ=0,BA=5TOUNIIBLKNUM) 5 ICTHK=TCTBK.COUNT. » BLKNUM

=(BLKNUM' CUUNT.) *,F=122))

T=(BA* ,COUNT.)%,F=]24

CNT=CNT.COUNT., ITEMP=ITEMP (1~3)- [TEMP(OQ),

BLKNUM=BLKNUM(1=3)~BLKNUM{ D}, F=125

FFICNTLNE L4) THEN|F=120)2LSECIF(EQ.EQ.0) THEN(EQ=1 ,F=120)

ELSE(F=126)) s

TFLTCTBK NELOYTHENIF=127)ELSE(F=132, 1A=N(TJ)

Ta=N(1),F=130

TE(TALNEL2T3145) THEN(1=0 1% . COUNT.)® F=127)
ELSE(T=(1®.COUNT.) ", ICTBK={ ICTBK.COUNT.)%,F=126)

FFCUIALRQ.302545)+(TALEQ.436225)) THEN(I=(1',COUNT.) Y,

F=135)ELSE(F=133)

TF(TA.EN.3333) THEN(I=(1'.COUNT.) ', F=135)ELSE(J=0A(33-44),

F=1)

[A=N(I},F=133

CCMMENT, PRIMARY

fUC(L36)*py
JuC LTy spy
70CLLAQ)+
/bC(142)%p/
JLC(L 4G) %Py

FA=M{T)yF=137

AFITANE 5454) THEN(F=145)ELSE(LINK=1,F=140)

TE(LINKLEQ O THENI(EXP=1,F=142) -
IF!EXPGEQeO)THEN(l=(I’.CUUNT.)’sDA(VALUEO)=AvF=144) *
O(K)=CA, F=145

COMMENT, FACTOR

J0CLLab L/
/0CLLaT) RPY/
fDCLLSL)/

IPC{15s)yepy
/IDELY5S4)y P/

Fig. 28

LELOSRCHNE .0 #(SALEQ5454)) THEN(F=13, 1A=0~SA)EL SE(
TA=H{T),F=14T)

TFOLALEQ.54) THEN(LINK=1,F=1S1 VELSELTF(IALEQ.61) THENI
LINK=1,F=15T)FLSE(F=162))
TELLINKL Qo THEN (I P21, [=157)
TFIMLPLEQ.O0)THINGF-1454)
T=(T*,COURT. ¢, 0AlVAl UEG)=A . F=153

CDL3 Program Listing 3

P

cox

J0CL155)8p/
JDCL15T 2P/
JUCLL161) =P/
COMMEN T, TERM
/DC 162120/

70C1165) 2P/

FUCL6T Y=/
0C(172) %0/
JuC 1 7a)%p/
fLCLLTo Y %P/
/uC{200)xp/
/pC(202)4p/
JVC1204) %P/

DiRI=0A,Fulb2
IFILINK.EQ. O THENIDIV=L,F=l6]l)
IFIDIV.EQ.0)THEN{F=154)

TF({SRCH.EQ.0V%{ {S-EQ.54)+(S-EQ.611))THEN{IA=50~5,F=13)
ELSE(TA=N(T),F=165)

IF{TA.EN,1000020) THENIUADD=1sF=167) ELSE(IF(IA.[C.1000040)
THEN(USUL=1,F=1T2)ELSE(IF(IA.FQ.20) THENILINK=1,F=174)
ELSEUIF(TA.EQu40)THEN{LINK=1,F=202)ELSE(F=205)))}
TF{UATC.EQ.0) THEN{I=(]1' . COUNT,)*sF=205)
IF(USUBLEQOITHEN(I=(1?.COUNT.)®4F=205)
TFILINK.EQaOITHEN{ADD=L,F=1T76)
fRIADE.EQ.OYTHENINAIVALUED) =A,F=2200)
OtKY=0A8, 1= COUNT.)"®,F=205
[FILINKSEQ.OITHENISUB=1,F=204)
IFISUR,TQ.0YTHEN{DAIVALUCD) =A,F=200)

CCMMENT, ARITHMETIC EXPRESSION

/DCL20%) %P/

/0C(210)*p/

/0C(212) 29/
/VC(215)%p/
/DC(217)#p/

70C{22)) %p/
JuCl2e2)a+/
/0C1223)+p/

70C(224) %0/

/70C(230) xp/

/00 (232) *p/
70C1233) %/
/0C1234) 4P/
/0C(235)%py

10C(236) %P/

/RCL23T %P/
/uCL240) %p/
IVC{241)P/

/0C(242)2p/
AT 2463) %1/
/uC2464) %P/
/LCLzaS)»p/
1DC {296) Ap)

J0C(247) %p/
TOCL250)py

Fig. 29

MEXNT , 5ASTC

IF(SRCH.CQ OITHENIIF{(S.EQa20)+{S.EQ-%40)) THEN[IA=S0~S,
F=13)ELSELIA=NIT)sF=210))ELSCHIFI{SA.ER.2550)+(5A.EQ.
4525) Y THEN(F=13, TA=0~SA)ELSE(IA=N(I1),F=210))
TF(IALEQ.T4)THENCIF(S.NEL34) THEN(ERROR=14,G=0,F=0)
ELSE(I=t1°.COUNTL)®,SYM=1,F=212))ELSEI

TF(TACEQL L3I THEN(I=(1 7. COUNT.), F=232)ELSELIF((TA.EQ.2550

FH{TAEV-4525)) THENIL INK=1; F=215)ELSE(ERROR=15,G=0,F=0)))

IFISYM. LU0 THENTF=136)
TFILINK.EQO)THENICNT=0,EQ=1,K=(K? . COUNT,)*yF=217)
IF(X{0)NE-A{O))THENIEQ=0),
CANT=CNT.COUNT.,A=A{1=-22)~-A{0) ¢ X=X(1-22)-X(0),F=221
TF(CNT NE23)THEN(F=217)ELSENIF(IA.EQ-4525)THENIEN=EQ*),
I=(1? . CAUNT.) s F=222)

COMMENT , iCOLEAYY EXPRESSION

A=i(1),F=223
IF(TALNEL3126)YTHEN(ERROR=
F=224)

IF{SRCH.EQ.0) THEN({ERROR=16,G=0,F=0)ELSE(IF(SA.NE.302545)}
THENIERROR=16,6=0,F=0)ELSE({IF(EQ-EQ.1)THEN(F=13, [A=0-SA)
ELSELSYM=1,F=230)))
TF{SYNEQ.O)THEN{IF(SRCH.EQ.O)THEN(SYM=1)ELSE(
TFISAENL436225) THEN({F=13, IA=0-5A)ELSE(IF{SA.EQ.254524)
THEN{F=260)ELSELIF(SAEQ.3373)THEN{F=260)ELSE(SYM=1))))

15¢46=0,F=0)ELSE(I={I*.COUNT.) %,

CCMMENT» ASSTGNMENT STATEMENT

0A=D{K)4F=233
IF(NALTYPED) . NE, O)THFN(F 237T)1ELSE(T1=0A(35-44),F=234)
T1=T,T=T1,F=235
TA=DSAT(T),F=23%
DAIVALUEM =TALVALUE) s T=T L, F=237
A=OAIVALUED) s K=(K®.COUNT .) ?,F=240
0A=0{K), F=241
1F(OALTYPLO) JNE.O)THEN(ERROR=1T7,6=0,F= O)ELSE(TI OA(35~44)
(F=242)
T1=T:T=TL,F=243)
TA=DSATIT),F=244
TA(VALUS)=A,F=245
DSATIT)I=TA;OA(VALUEO)=A, DA(TYPED) = TA(TYPE)eF 246
N1KI=DA,T=T1,F=247
STATEMENT
IA=4(1),F=250
TFLIALNE L3333 THENLF=25 JELSELI=(19, COUNT.) ?,
K=[K® COUNT) F=24T)

CONMENT , UNCOND ! 1 1OMAL STATEMENT

CDL3 Program Listing &

83

84

FUCI251 18P/ IFISRCH.EQ.OITHENIIA=N{T),F=253)ELSE{IF{SA.EQ.436226)
: THEM{SYMa] Fu296 I ELSE(TA=N(1), F=253})
/0012537 TF{{IAEQ.302545)¢{1AEQ.436226)) THENITI=(1.COUNT.)},
F3260)ELSE(F=262)
7DC(256)1%P/ TF{SYV.EQ.O)THEN{IF{SRCH.EQ.0)THEN{SYM=1)ELSE(
TF(SALEN.254524) THENIF=260)ELSE(TF(SA.EQ.3373)THEN(F=260)
ELSF{SYM=1))
COMMENT ,CCNDITIONAL STATEMENT
/DC(260)%P/ 1A=N(1),F=261
J0C(26114P7 IF(TAEDL3333)THENITI=(1%COUNT.) ®sK=(K® . COUNT.)®,F=260)
' ELSC(F=262)
COMMENT , STATEMENT
JuCL2621%P/ TA=N{1),F=263
/UCL2631%P/ TF{TAGEOD33T3)THEN(I={I?.COUNT.)®*),K=0,
IFISRCH,EQ.O) THEN(ERRDR=6,G=0,F=0)ELSE{IF{SA.EQ.3373)
THEN(F=13,1A=0-SA)ELSE{IF(SA.NE.254524) THEN(ERROR=6,F=0,6G=
DIELSELF=266)))
/DCL2066)4P/ TA=M{1),F=207
FOCLE26TY#P/ TF(1A.EQa273L4S5)THEN(T=(1*aCUOUNT.)®F=2T2)ELSE(LF
(TALNELI3T3)THEN{ERROR=7,6=0,F=0)ELSE(I=(1 ¢, COUNT.)*,
TA=N{T)sF=2T71))
/DC(2T1) %P/ IF(!A EN. ?73145)THEN(Y=(I‘eCOUNToi99F=272)ELSE(ERRDR=10y
=0,F=0)
COMMENT , BLOCK AiD COMPOUND STATEMENT
IDCU2T2)%P7 BA=STCRAJ(BLKNUM) 4F=273
J0CL2T3)14P/ T=(BA?COUNT)P g BLKNUM={BLKNUM® COUNT) *F=2T74,SYM=1
J0CL2Ta)*P/ TA=NUT), IF(5YM.EQ.OYTHEN(F=275)
J0C275)%P/ TF(TALEN.3333)THEN(I=(1* . COUNT,), F=274)ELSE(IF(SRCH.NELO}
THEN(F=251)ELSEITF(S5.EN. 93} THEN(F=2T76)ELSE(F= 2)1)!)
CUMMENT 3, PROGRAM
JOCL2T6)%/ TF(IASNF,S53YTHENIERRUR=11,0=0,F=0)ELSE(I=(I'.COUNT.})*)
COMMENT s HIRE BEGINS SPECIAL ROUTIMES
C
COMMEMT , FETCH CHARACTER FROM MEMORY
JSYMESYCLOY#P/ TF(SYM.EQ.I)THEN(SRCH=0,S=MEMIJI)} s J=J.COUNT. .FSY=2,54=0)
/5YC(2)xp/ TF(S.EQalAITHENII=J .COUNT ., SRCH=1,FSY=5,5=MEM(J) ICLSEL
TFIS.EQ.33)THEN(FSY=10,J=J.CUUNT.,S=MIM(J},SA=33)ELSEY
IFIS.EC.54) THEN(FSY=14,3=J.COUNT .. S=MEM(J) SA=54)CLSE(
SYM=04FSY=0)))
/SYC(5)*pP/ IF(S.EQal4) THEN{SYM=0,FSY=0)ELSE(SA=SA(6~21)~5yS=MEM(J),
J=J.CCUNT.)
/SYC(10)#P/ IF({SeFC.T3)+{S.EQ.33))THEN(ISA=SAL6-21)~-5,S5YM=0,FSY=0,
SRCH=1)CLSE(S=33,J=(J*COUNT.)?,SYM=0,FSY=0)
/SYCULL4)*P7 IF(S.EQ.54)THENISA=SALO6-21)~S,SYN=0,FSY=0;SRCH=1JLLSE(
$=54,4=21J COUNTL)? o SYM=0,FSY=0)
COMMENT, CHANGF NOPCRAND FROM LINK TO VALUE
JUINKHLC(OY$P/ IF(LINK.CQ 1) THEN(OA=D(K), FL=2)

/LC2Yy%p/ IFLOACTYPRO) EQ.OITHENITI=UAL35-44),FL=4)ELSE(FL=T)
JLC 4y P/ T1=T:T=T1;FL=5

/LCtS)=pY TA=DSAT(T) FL=6

/Lcier«p/ OA{VALUREO) =TA(VALUE), T=T1,FL=7

/LCLT YR/ K=0A(VALUED) o K={K®*COUNT.)?,FL=10

JLCLYO) %D/ VA={H{ K}, FL=11

JLC(L1yap/ IFLOACTYPLO) .SQ.0)THEN(TL=0A(35-44) FL=13)ELSE(FL=16)
JLCLL3Y*v /. T1l=T,T=T1,FfL=14

JLCL Ay &/ TA=DSAT({T Y, FL=15

JLCAL L) =Dy OAVALUTO) =TALVALUE) , OA(TYPED)=TA(TYPE),T=T1,FL=16
/LCL10) %P/ ARDA(VALUED) s LINK=04FL=0
COMMENT, AUD SFQUENCE

JADD sAC (O} ¥P/ LFUADDEQ.IITHEN(Z1=0,0V=0,L7-0,AVz0,FA=2)

Fig. 30 Program Listing 5

85

TAC{23%p/ IF{AJOTNELRTOTITHENISE=L - X{MXT2aR{MN) 2§ . ADDS=1 FA=4
IAC(4 Y %P/ IF{ADDS.E0Q.0) THENI
IF({ST] *0VT&L2%), EQ-L1ITHEM{A=A®),
IF((ST*%0V)-EQ.1)THEN(AVY=1),
TFUIST#OVexLZ).EQ.YITHEN(A=0),
TF((STHOVALZ?) EQu L) THENIA(MI=A(MILCOUNT.),
ADD=0, FA=0)
CCMMENT, SUBTRACT SECUENCE
/SUB#¥SCLO)*P/ IF{SUB.EQel) THENI(X(O)=X(0)*,ADD=1:FS5=2)
75Ct2)%p/ IF{ADIN.FQ.0) THEN(SUB=0;F5=0)
COMMENT, ADD SUBSEOQUFNCE
/ADDS*ASC(O)Y %P/ IF(ADDSEQ.LITHEMN{AR=(0~A(M))} ADD. (0=-X(MX)),FAS=2
IASCl2)V#py A{MY=AR(1-22), IFLAR{D).EN.Y)THENI{OV=1) ,FAS=3
JASCL3)*xpy IFCA(M)EQeTTTTTTITHEN(LZ=1) ADUS=0,FAS=0
COMMENT, MULT IPLICATION SEQUENCE
/MLP#MC{Q)*P/ IF(MLP. EQ-LITHENIOV=0,L7=0,51=0,0{0)= OVFM 2)

/G2 %P/ AFUALO)NEX{O)ITHENIST=1),CNT=22,0(MQ)=X{MX)} s X=A,A=04 FMab

INCLa)=p/ CNT=(CNT?COUNTL) ", IF{QU22) aNE. L) THEN(FM=6)ELSE(ADDS=1
F1=5)

IMCU5YRPY IF{ADCS.EQO)THEN{FM=6)

ICle 4P/ Al2-221=A(1-21), QMUY =A(22)-Q11~21),
TF(CNTME.O)THEN{ FM=4)ELSEL
TRFISTLEQ.LITHEN(A{O)=1,Q¢0)=1),A(M)=R(MQ),Q(MQI=A(M),
MLP=0,FM=0Q)
END
$STMULATE : ’
#QUTPUT CLOCK(1)=AV, OV ,ERROR: JoKo 1T BLKNUMySeTA: DA, TASA:QUT(O),
QUTt1)s0UA, INA
*SWITCH 1, POWER=0ON
#SWITCH 29 START=0N
¥LUAD
INP{O}=1G,
MEMIO~ 1=253,14427431:45:14,1%,27,25:51514421,73:22,33,73,
MEM(20~- 1214250214240 14074321:34333,73,22,13,21:20,2,33,73,
MEM{4l~ 1=2164531;63425:14,T74:22:34;14,25,45,24,14,53
#SIM 1000,13
9999
$IBSYS
$RESTORE
9999

Fig. 31 Program Listing 6

86

Table 4 Flow of the Sample Program

T

CT Nonterminals Symbols Comments
! ‘.
2-7 IP-INC ? 8 ' Store $ into operator
i stack
|
8-101 IP-E1-INC | 'BEGIN' After recognizing
'"BEGIN', scan block for
labels and store 'BEGIN'
on operator stack.
102-154 IP-INC-IP-I '"INTEGER' Recognize declaration.
I-V-INC-IP- A,B; Store ";" on operator
I-V~TL~D-INC stack., A and B in DSAT.
155-203 IP-INC-IP- '"READ'(A) ; Recognize read state-
INC-IP-I-V- ment and store value
RS-BS-US— of A in DSAT.
S-INC
204-301 IP-I-V-INC-IP-I B=A+2; Recognize assignment
~V-P~F-T~-AE-INC statement. Compute A+2
-IP-UN-P-F-T-AE and store result in B's
-AS-BS-US-5-INC location in DSAT.
302-357 IP-INC-IP-INC- 'WRITE ' (B) Recognize write state-
IP-I-V-WS-BS~- ment. Write value of B
Us-5 on output channel.
358-364 B-PR TEND' Recognize program

87

terminal boxes as the computer is scanning the program. The third columm shows
the symbols or symbol being scanned during this point and the fourth columm
describes the essential operation. Using this table as a guide, the reader is
encouraged to go through the computer operation himself for the given program

input.

88

5. Acknowledgement

The preparation of this paper was stimulated by the two courses offered
at the Computer Science Center of University of Maryland: "Structure of Pro-
gramming Languages''instructed by Dr. Victor Schneider where the ALGOL Interpreter
concepts and structure were outlined, and "Simulation of Digital Computers"
instructed by Dr. Yaohan Chu where a methodology of computer-structure description
and simulation were presented. This work has been an outgrowth of a project
of the above simulation course. The author would like to acknowledge Dr. Yaohan
Chu's encouragement and effort which has made this report a reality and Nancy

A. Nowell's effort in typing this report.

89

6. References

[1] Y. Chu, "Introduction to Computer Organization", Prentice Hall, Inc., 1970.

[2] P. Wegner, "Programming Languages, Information Structures, and Machine
Organization, "McGraw Hill, New York, 1968, Chapter 4 and Appendix 1.

[3] P. Naur (ed), Revised Algol report. Comm. of ACM, Jan., 1963.

[4] S. Rosen (ed), "Programming Systems and Languages, '"McGraw Hill, New York,
1967, Part 3.

‘[5] Y. Chu, The Bi-Tran Six Computer Organization, University of Maryland,
Computer Science Center, July 1968.

‘[6] C. Mesztenyi, Computer Design Language, Simulation and boolean translation,
University of Maryland, Compﬁter Science Center, Technical Report 68-72,

June 1968.

